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Mimicry is common in interspecies interactions, yet conditions maintaining
Batesian mimicry have been primarily tested in predator–prey interactions.
In pollination mutualisms, floral mimetic signals thought to dupe animals
into pollinating unrewarding flowers are widespread (greater than 32 plant
families). Yet whether animals learn to both correctly identify floral models
and reject floralmimics andwhether these responses are frequency-dependent
is not well understood. We tested how learning affected the effectiveness and
frequency-dependence of imperfect Batesian mimicry among flowers using
the generalist bumblebee, Bombus impatiens, visiting Begonia odorata, a plant
species exhibiting intersexual floral mimicry. Unrewarding female flowers
are mimics of pollen-rewarding male flowers (models), though mimicry to
the human eye is imperfect. Flower-naive bees exhibited a perceptual bias
for mimics over models, but rapidly learned to avoid mimics. Surprisingly,
altering the frequency of models and mimics only marginally shaped
responses by naive bees and by bees experienced with the distribution and
frequency of models and mimics. Our results provide evidence both of
exploitation by the plant of signal detection trade-offs in bees and of resistance
by the bees, via learning, to this exploitation. Critically, we provide experimen-
tal evidence that imperfect Batesian mimicry can be adaptive and, in contrast
with expectations of signal detection theory, functions largely independently
of the model and mimic frequency.

This article is part of the theme issue ‘Signal detection theory in
recognition systems: from evolving models to experimental tests’.
1. Introduction
Mutualisms have been described as reciprocal exploitation, through which each
interacting partner achieves a net benefit [1–3]. Mutualisms can thus involve
cooperation but also conflict. Plant–pollinator mutualisms, in which animal
pollinators visit flowers to acquire resources (floral ‘rewards’; e.g. pollen or
nectar) and in the process pollinate the plant, provide examples of conflict
between mutualist partners. For example, pollinators sometimes exploit plants
by taking resources without pollinating, as frequently happens in nectar robbing
(e.g. [4]). Likewise, plants sometimes exploit pollinators by deceiving them into
visiting and pollinating flowers that falsely advertise more resources than they
have [5–7].

How do pollinators mitigate exploitation by plants? Pollinators such as bees
alter their search behaviour after visiting unrewarding flowers and also learn to
use distinctive floral cues to visit more rewarding plant species (e.g. [8–12]). For
instance, bees learn to avoid the distinctively coloured flowers of unrewarding
orchid species, such as Calypso bulbosa (e.g. [13]). It is thus not surprising that
deception via mimicry of rewarding flowers—Batesian mimicry—is common
and widespread among plants (greater than 32 plant families, see [6,14–16]).
However, while pollinator learning is frequently proposed to mitigate

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2019.0469&domain=pdf&date_stamp=2020-05-18
http://dx.doi.org/10.1098/rstb/375/1802
http://dx.doi.org/10.1098/rstb/375/1802
http://dx.doi.org/10.1098/rstb/375/1802
mailto:averyrussell@missouristate.edu
https://doi.org/10.6084/m9.figshare.c.4946076
https://doi.org/10.6084/m9.figshare.c.4946076
http://orcid.org/
http://orcid.org/0000-0001-8036-2711
http://orcid.org/0000-0002-7379-2788


(b)(a) (c)

UV

B

G

Figure 1. Imperfect mimicry among female (mimics) and male (models) in Begonia odorata flowers. (a) Female and (b) male flowers. (c) The loci in B. impatiens
colour space (B, blue; G, green; UV, ultraviolet) of male and female petals (blue and red diamonds, respectively), stamens (blue circles) and styles (red circles)
against the test arena background: female flowers resemble the colour of male flowers in terms of both reproductive and non-reproductive parts (n = 5 male
and female flowers). On average, male and female petals differed by 0.012 colour units and reproductive parts differed by 0.065 colour units; bumblebees
have difficulty discriminating targets less than 0.07 colour units apart [37].
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exploitation by floral Batesian mimics [6,17–22], how this is
achieved is still poorly understood (but see [18,23–25]).

Successful Batesian mimicry is thought to depend primar-
ily on the frequency of rewarding models and unrewarding
deceptive mimics, as well as on the phenotypic similarity
of the mimic to the model as perceived by their receivers
[26–30]. Signal detection theory predicts that a naive pollinator
confronted with a rewardless mimic should, if possible, adjust
its behaviour to avoid visiting mimics, even at the expense of
avoiding rewarding models, such that its overall rate of correct
decisions increases over time (maximizing foraging efficiency)
[28,31,32]. Because naive pollinators are initially unfamiliar
with the phenotypic distribution, frequency, and costs and
benefits of visiting models and mimics, visitation decisions
should not depend on themodel andmimic frequency initially.
However, with increasing experience, pollinators should opti-
mize the avoidance of mimics versus models in relation to
the model and mimic frequency [28,33–35]. Namely, as the fre-
quency ofmimics rises, the cost of visiting them rises in relation
to the cost of failing to visit models. Therefore, as the frequency
of mimics increases, pollinators should be more conservative
and make relatively fewer visits to models to avoid mistakenly
visiting mimics.

How easily pollinators can adjust their visitation behaviour
should depend on how well mimics resemble models, how
quickly pollinators can learn and how finely pollinators
can discriminate [18,28,29,36]. In intersexual floral Batesian
mimicry, male flowers typically offer a pollen reward, while
female flowers of the same plant species are deceptive reward-
less mimics [16] (e.g. figure 1). While we might expect that
selection on the plant would favour close resemblance
among female and male flowers, imperfect floral mimicry is
common in intersexual floral mimicry [38–40]. Following
Kikuchi & Pfennig [29], possible hypotheses include that
imperfect mimicry is an anthropocentric perception and polli-
nators do not actually perceivemimics differently frommodels
‘eye of the beholder’ (predicts that pollinator preference is
unbiased), or that mimicsmay be developmentally constrained
in the precision of their mimicry (predicts that pollinators
prefer models over mimics), or that imperfect floral mimicry
is adaptive and imperfect mimics exploit pollinator sensory
biases (predicts that pollinators prefer mimics over models)
[41–43]. Surprisingly, to our knowledge, no studies have
disentangled the hypotheses for imperfect floral mimicry.

In this laboratory study, we tested whether generalist
bumblebees (Bombus impatiens) used learning to mitigate
exploitation by a simultaneously monoecious plant species
exhibiting intersexual Batesian mimicry (in terms of overall
flower colour pattern, and in terms of divided styles resem-
bling anthers in form and colour, i.e. pseudanthery [16],
sensu [44]; figure 1) and a flexible sex ratio (Begonia odorata;
figure 1). We hypothesized that imperfect floral mimicry in
B. odorata was adaptive in terms of pollination and naive bees
would initially prefer to visit unrewarding female flowers
(mimics) over rewarding male flowers (models) as a result of
a sensory bias. We also predicted that in accordance with
signal detection theory, as bees gained experience they would
increase their rate of correct decisions (correct decisions:
approaching and landing on models and approaching but
not landing on mimics; incorrect decisions: approaching but
not landing on models, approaching and landing on mimics)
by increasingly avoiding both mimics and models. Finally,
we assessed whether patterns of correct detections (approach-
ing and landing on models) and correct rejections
(approaching but not landing on mimics, i.e. false alarms)
made by naive and experienced bees depended on the model
and mimic frequency. We predicted that initially naive bees,
which were initially unfamiliar with model and mimic fre-
quency, would decrease their correct detections most when
the mimic frequency was highest, owing to the higher cost of
visitingmimics relative to the cost ofmissingmodels. Likewise,
we predicted that experienced bees would have learned to be
more conservative and would make fewer correct detections
and more correct rejections when the mimic frequency was
high, compared to when the frequency of mimics was low.
2. Material and methods
(a) Test subjects
We maintained nine commercially obtained (Koppert Biological
Systems, Howell, MI, USA) captive colonies of the bumblebee
B. impatiens following Russell et al. [45]. In brief, we allowed
colonies to forage freely on 2 M sucrose solution and pulverized
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honeybee-collected pollen (Koppert Biological Systems) from
artificial feeders within enclosed foraging arenas (length, width,
height: 82 × 60 × 60 cm) set to a 14 h : 10 h light : dark cycle.

We used fresh male and female flowers with mature anthers
and styles, respectively, from 10 simultaneously monoecious
B. odorata plants raised in a university greenhousewith supplemen-
tal halogen lights to extend day length to a 14 : 10 h cycle and with
monthly fertilizer applications (Miracle Gro, NPK 15 : 30 : 15).
While female B. odorata flowers are rewardless and produce neither
pollen nor nectar, male B. odorata flowers offer pollen, their sole
reward to their principal pollinators, bees [14,36,46,47]. Female
B. odorata flowers closely resemble male flowers in shape, size
and colour (to the human eye, at minimum; figure 1); in bumblebee
colour vision, both flower sexes have similar creamy white dis-
sected petals, and the female flower’s yellow and highly divided
styles closely resemble the male flower’s yellow numerous stamens
(characterized following [48]; figure 1c). While petal colour resem-
blance probably results from a shared developmental pathway,
non-homologous anthers and styles show great similarity in their
colour and form, strongly suggesting selection for mimicry (see
also [16,42]); furthermore. Like other Begonia species, B. odorata
sex ratio on individual inflorescences is labile (e.g. [42,49]).
5:20190469
(b) Experiment 1: do naive bees exhibit a perceptual
bias for the mimics versus the models?

Here, we tested the naive preference of bees for models (reward-
ing male flowers) versus mimics (unrewarding female flowers).
We used 32 bees from four colonies. To initiate a behavioural
trial, we set up 16 horizontally displayed freshly clipped flowers
(an equal number of male and female flowers alternated by pos-
ition) on the arena wall in a cleaned test arena. Flowers were
spaced 7 cm apart in a Cartesian grid design. To prevent desicca-
tion, flowers were placed into custom-made water tubes [45].
From the foraging arena, a single flower-naive worker bee was
gently captured using a 40 dram vial (Bioquip) and immediately
released in the centre of the test arena following Russell et al. [45].
We terminated the trial by capturing the bee in a 40 dram vial
and euthanizing it after the bee made its first landing on a
flower, or, rarely, if it did not approach any flower for a period
of 5 min, whichever came first. We defined landing as the bee
touching the flower with at least three of its legs simultaneously.
For each trial, we used a new flower-naive bee and, for most
trials, new freshly clipped flowers; when flowering was limited,
we replaced only the visited flower and a random flower of the
opposite sex.
(c) Experiment 2: does the frequency of models and
mimics affect how naive bees learn to sample?

Here, we examined whether model (male flowers) and mimic
(female flowers) frequency influenced how initially flower-naive
bees learned to sample among models and mimics. We used 36
bees from three colonies. We examined three major components
of sampling behaviour (visits) made by bees visiting arrays of 16
flowers: approaches, landings without sonication (onmale flowers
such landings typically involved the bee collecting pollen via a be-
haviour termed scrabbling; see [45] for a description) and landings
with sonication (buzzes’ or ‘buzzing) (see flow diagram in the elec-
tronic supplementary material, figure S1). An approach was
defined as the bee in flight greatly reducing its velocity while
facing the flower within 3 cm of the flower. All landings were pre-
ceded by an approach (i.e. ‘correct detections’ for models; ‘false
alarms’ for mimics) and landings on male flowers (models)
nearly always involved collection of pollen. Not all approaches
were followed by a landing (i.e. ‘missed detections’ for models;
‘correct rejections’ formimics). Buzzes, which indicated an attempt
at extracting pollenwhether or not it was available, were identified
by their distinctive sound and occurred only after a bee had landed
(see [50]). Buzzing a male flower constituted a correct behavioural
response and buzzing a female flower constituted an incorrect
behavioural response.

We split flower-naive bees into three treatments with colonies
represented approximately equally among treatments: either
mimic biased (12 female and four male flowers), no-bias (eight
female and eight male flowers), or model biased (four female and
12 male flowers). In the no-bias treatment, flower sexes were alter-
nated by position. For sex-biased treatments, the rarer flower sex
was assigned two central and two corner positions in either of
two arrangements, which we systematically alternated across
trials. We tested bees individually and never reused flowers or
bees across trials. We terminated a trial after a bee made up to 60
visits (15 out of 36 bees made less than 60 visits: range 5–60
visits) and never reused flowers. Sometimes a bee visited the
same flower more than once in a row, which typically involved
the bee landing, hovering while within 3 cm of the same flower,
and then landing again on that flower. To be conservative, we dis-
carded these repeat visits (across all treatments, an average of 10%
of visits) for all analyses, reasoning that the bee may not have had
the opportunity to actively assess the other flowers.

(d) Experiment 3: does the frequency of models and
mimics affect sampling by experienced bees?

Here, we determined whether sampling of models (male
flowers) and mimics (female flowers) by bees familiar with the
phenotypic distribution, frequency, and costs and benefits of
foraging on models and mimics was influenced by model and
mimic frequency. We used 24 bees from five colonies. To generate
the largest possible difference in sampling behaviour, we split
flower-naive bees into two treatments: mimic biased (12 female
and four male flowers) and model biased (four female and 12
male flowers). We first allowed flower-naive bees to gain experi-
ence with models and mimics and their frequency by allowing
them up to 40 visits (minimum: 32 visits; 6 out of 20 bees made
less than 40 visits) in a training flower array with a given flower
sex ratio.We used this cutoff to standardize experience across treat-
ments and limit the potential effect of repeat sampling; by 40 visits,
a bee had sampled each flower on average 2.5 times and landed on
each flower at least once.

Following Russell et al. [11], 20 min to 1 h after training, the
experienced bee was allowed to make up to 30 visits in a fresh
test flower array with a frequency of models and mimics identical
to the training array. Using fresh flowers in test arrays minimized
the prospect that differences in sampling behaviour were a con-
sequence of pollen depletion by test bees or learning of scent
marks test bees might have added to flowers [51]. From these
analyses, we excluded four bees with fewer than five visits
during training and no flower landings.

(e) Data analyses
All data were analysed using R v. 3.3.2 [52].

(i) Experiments 1 and 2
To analyse flower-naive bees’ naive preference for models (male
flowers) versus mimics (female flowers), we pooled bees’ first
landing choice from experiment 1 and from the no-bias treatment
in experiment 2, and used a G-test (DescTools package [53]).
To analyse initially flower-naive bees’ overall preference for one
or the other flower sex from the no-bias treatment in experiment
2, we performed a paired t-test on the mean proportion of a
bee’s landings on each flower sex after checking that assumptions
of normality and equal variance were met.
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Figure 2. Sampling behaviour of initially naive bees foraging in treatments that were mimic biased (female flower biased), model biased (male flower biased) or
not biased (equal number of male and female flowers). The proportion of (a) first landings ( pooled among experiments 1 and 2) or mean proportion of landings
(± s.e.) by initially naive bees on mimics (versus models) in the no-bias treatment (experiment 2). n = 43 and 11 bees, respectively. Mean proportion of (b) correct
decisions, (c) correct rejections and (d ) correct detections made by experienced bees making up to 60 visits. n = 12, 11 and 13 bees in the mimic, model and not
biased treatments, respectively. Plotted lines indicate estimated means and shaded regions indicate 95% confidence intervals (CIs). Asterisks indicate significant
differences in the proportion or in mean proportions among treatments at p < 0.05 according to a G-test, paired t-test or Tukey’s post hoc test.
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(ii) Experiments 2 and 3
To analyse how experience and the frequency of models and
mimics affected sampling behaviour, we fitted generalized linear
mixed models (GLMMs) with a binomial distribution using the
glmer() function (lme4 package; [54]), specifying type II Wald
chi-squared (χ2)-tests via the Anova() function (car package [55]).
We checkedmodel assumptions for all models (DHARMa package
[56]). The response variablewas sampling behaviour (either ‘correct
decision’, ‘correct detection’, ‘correct rejection’, ‘missed detection’,
‘false alarm’, ‘landing’ or ‘sonication given landing’) and the expla-
natory variables were ‘treatment’ (no-bias and/or female-biased
and male-biased) and ‘visit number’. For experiment 3, we ana-
lyzed the sampling behaviour (either ‘correct decision’, ‘correct
detection’, or ‘correct rejection’, ‘missed detection’, ‘false alarm’)
only in the test array. We included ‘bee’ as a random factor for all
GLMMs (‘bee’ within ‘colony’ would not converge), with a single
exception: random factors generated a singularity error for the
correct detection model for experiment 3 and we, therefore, used
a general linear model (GLM). In cases of significant effects, we
ran Tukey’s post hoc test using the glht() function (multcomp pack-
age [57]) to determine which pairs were significant. Finally, to test
for a significant correlation between correct rejections and correct
detections, controlling for treatment (no-bias and/or female-
biased andmale-biased), we used a one-way analysis of covariance
(ANCOVA) using the lm() function in R.
3. Results
(a) Experiment 1: naive bees exhibit a perceptual bias

for the unrewarding female flowers
When the frequency of models andmimics were equal, flower-
naive bees preferred mimics (rewardless female flowers;
figure 1) over models (rewarding male flowers; figure 1) on
their first landing by a factor of 1.9 (figure 2a; G-test: G = 3.99,
p < 0.046, n = 43 bees pooled from experiments 1 and 2).
However, across all landings (experiment 2, equal sex ratio
treatment only), bees preferred models over mimics (figure 2a:
paired t-test: t10 = 3.42, p < 0.007, n = 11 bees).
(b) Experiment 2: frequency of models and mimics had
little effect on how naive bees learned to sample

Initially flower-naive bees learned tomakeproportionatelymore
correct decisions with experience (combining correctly rejecting
mimics and correctly detecting models) (figure 2b; GLMM:
x21 ¼ 33:83, p < 0.0001; n= 36 bees). This effect of experience
wasstrongerasthe ratioofmimicstomodels increased (figure2b;
GLMM: treatment × experience effect: x22 ¼ 18:25, p< 0.0002).
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Figure 3. Landing behaviour of initially naive bees (same dataset as in figure 2, analysed for different behaviours) foraging in treatments that were mimic biased
(female flower biased), model biased (male flower biased) or not biased (equal number of male and female flowers). Mean proportion of lands made on (a) models
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significant differences in mean proportions among treatments at p < 0.05 according to Tukey’s post hoc test.
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This effect is probablya consequence of bees having correspond-
ingly more opportunities to reject mimics and thereby learning
faster to reject, even though those bees did more poorly at first
in more mimic biased treatments.

Bees improved their ability to correctly reject mimics
(figure 2c), but became worse at correctly detecting models
(figure 2d). As bees gained experience they increased their cor-
rect rejections by a factor of 6 (figure 2c; GLMM: x21 ¼ 113:58,
p < 0.0001), but decreased their correct detections by a factor
of 1.3 (i.e. made more missed detections) (figure 2d; GLMM:
x21 ¼ 29:84, p < 0.0001). These patterns were not affected by
model and mimic frequency (figure 2c,d; GLMMs: correct
rejections, treatment effect: x22 ¼ 2:88, p = 0.237; treatment ×
experience effect: x22 ¼ 2:77, p = 0.251; correct detections, treat-
ment effect: x22 ¼ 2:45, p = 0.294; treatment × experience effect:
x22 ¼ 0:41, p = 0.816).

Despite making more missed detections with experience,
bees improved their proportion of landings on models relative
to mimics with successive visits (figure 3a; GLMM: x21 ¼ 19:25,
p < 0.0001). Additionally, bees proportionately made signifi-
cantly more landings on models in treatments with more
models; this is probably a consequence of having more oppor-
tunities to land on models (figure 3a; GLMM: x22 ¼ 57:14,
p < 0.0001). The effect of experience did not depend on the rela-
tive frequency of models and mimics (figure 3a; GLMM:
treatment × experience effect: x22 ¼ 1:80, p = 0.411).

Upon landing, bees sonicated both mimics and models
significantly more with experience (figure 3b,c: GLMMs:
sonicating mimics: x21 ¼ 11:15, p < 0.0009; sonicating models:
x21 ¼ 45:98, p < 0.0001). These patterns were not affected by
the relative frequency of models and mimics (figure 3b,c:
GLMMs: sonicating mimics, treatment effect: x22 ¼ 1:95,
p = 0.376; treatment × experience effect: x22 ¼ 1:74, p = 0.418;
sonicating models, treatment effect: x22 ¼ 0:03, p = 0.985;
treatment × experience effect: x22 ¼ 0:13, p = 0.938).

(c) Experiment 3: frequency of models and mimics had
little effect on sampling by experienced bees

Bees experienced with the phenotypic distribution, frequency,
and costs and benefits of foraging on models (rewarding
male flowers) and mimics (rewardless female flowers) that
had their sampling behaviour tested subsequently showed
a small but significant additional improvement in correct
decisions during the test (combining correctly rejecting
mimics and correctly detecting models) (figure 4a; GLMM:
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Figure 4. Sampling behaviour of experienced bees (trained previously) foraging in test treatments that were mimic biased (female flower biased) or model biased
(male flower biased). Mean proportion (a) of correct decisions, (b) correct rejections and (c) correct detections made by experienced bees making up to 30 visits.
n = 10 bees per treatment. Plotted lines indicate estimated means and shaded regions indicate 95% CIs. Asterisk indicates significant differences in mean pro-
portions among treatments at p < 0.05 according to Tukey’s post hoc test.
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x21 ¼ 5:77, p < 0.017; n = 20 bees). This effect of experience
depended on model and mimic frequency and was stronger
for experienced bees in the mimic biased treatment than in
the model biased treatment (figure 4a; GLMM: treatment ×
experience effect: x21 ¼ 6:11, p < 0.014).

We found no effect of model and mimic frequency on cor-
rect rejections and a modest, but significant effect on correct
detections, examined separately (figure 4b,c; GLMM: correct
rejections: x21 ¼ 0:003, p = 0.956; GLM: correct detections:
x21 ¼ 9:81, p < 0.002). However, experienced bees still learned
to make modestly more correct rejections, by a factor of 3,
and decreased their correct detections by a factor of 1.3
(i.e. made more missed detections) (figure 4b,c; correct rejec-
tions: x21 ¼ 27:03, p < 0.0001; correct detections: x21 ¼ 11:84,
p < 0.0006). Neither pattern was affected by model and mimic
frequency (figure 4b,c; GLMM: treatment × experience effect,
correct rejections: x21 ¼ 0:08, p = 0.783; GLM: correct detections:
x21 ¼ 1:85, p = 0.174).
(d) Experiments 2 and 3: correct detections and correct
rejections were negatively correlated

Any effect of model andmimic frequency on correct detections
in experiments 2 and 3 did not depend on correct rejections
(ANCOVA: naive bees: F1 = 2.06, p = 0.145; experienced bees:
F2 = 0.07, p = 0.792). For both naive and experienced bees,
there was a significant negative correlation between correct
rejections and correct detections (ANCOVA: naive bees:
F1 = 4.31, p < 0.046, R2 = 0.152; experienced bees: F1 = 5.04,
p < 0.040, R2 = 0.435). Furthermore, for experienced bees
(experiment 3), but not initially naive bees (experiment 2),
there was a significant difference in the relative proportion
of correct detections made among treatments, in accordance
with results presented above (ANCOVA: naive bees: F2 = 0.89,
p = 0.420, experienced bees: F1 = 8.66, p < 0.0096).However, this
difference between initially naive and experienced bees is con-
founded with differences in experience and the number and
kind of treatments.
4. Discussion
Batesianmimicry is thought to rely on the perceptual similarity
of the model and mimic for the receiver [28–30,35,58]. Why
then are deceptive flowers of many plant species imperfect
mimics (e.g. [16,21,38–40,59])? Assuming our results are repre-
sentative of Batesian floral mimicry systems, imperfect
mimicry is probably an evolutionary response to the capacity
of pollinators to learn and involves the exploitation of
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pollinator sensory bias to overcome or diminish the effects of
learning. Initially, flower-naive bumblebees strongly preferred
to land on unrewarding deceptive mimics over models. How-
ever, bees rapidly learned to recognize and reject mimics.
While such learning involved a trade-off, with bees also
increasingly rejecting rewarding models, bees still benefitted
by making increasingly more correct decisions with experi-
ence. Our results thus suggest that selection for floral traits
which elicit sensory bias from pollinators has been driven
more strongly by the pollinator learning to make correct rejec-
tions (i.e. sensory bias makes the mimics more difficult to reject
by learning), than by the pollinator learning to positively identify
the model. Following the perceptual exploitation hypothesis,
Kikuchi & Pfennig [60] predicted that in interspecies Batesian
mimicry, mimics should rarely be imperfect to exploit a sensory
bias, because models should typically be under the strongest
selection to elicit a response from receivers. However, in intersex-
ual Batesian mimicry, a given individual plant expresses both
models and mimic phenotypes. In this circumstance, selection
probably favours rewardless mimics to exploit sensory bias
more so than models by way of facilitating pollination.

Signal detection theory predicts that naive pollinators
increase their overall rate of correct decisions (therebymaximiz-
ing foraging efficiency) by learning to avoid mimics, even if
that means avoiding rewarding models [28,35]. While limited
evidence from interspecies floral mimicry studies indicates
that pollinators learn to avoid deceptive floral mimics (e.g.
[13,18]), we compared changes in both correct rejections (avoid-
ing rewardless mimics) and correct detections (accepting
rewarding models). Consistent with signal detection theory,
we found that initially naive bees adjusted their behaviour to
avoid visiting floralmimics (that is, correct rejections increased),
even at the expense of avoiding models (i.e. missed detections
increased). In fact, correct rejections and correct detections
were significantly negatively correlated: as correct rejections
increased in frequency, correct detections decreased. We
cannot rule out that, at least in part, bees increased their
missed detections as a strategy to avoid increasingly depleted
flowers; however, the number of initially rewarding flowers
did not affect the pattern and missed detections also increased
before bees visiteddepleted flowers.Despite reducing their pro-
pensity to make correct detections, the net outcome of learning
was that bees made proportionally more correct decisions with
experience. In addition, whilewe did not quantify pollen collec-
tion, bees made proportionally more pollen-collecting landings
on rewarding models with experience, suggesting that they
probably increased their foraging efficiency with experience.

Signal detection theory also predicts that receivers should
be sensitive to the costs and benefits of foraging on models
and mimics [28,34,35,60]. We found that over time, bees
switched to using floral sonication to collect pollen from
male flowers, a foraging behaviour used when pollen has
been depleted (see [45]). The benefit to foraging on models in
our study should thus decline over time; bees acquire less
pollen with subsequent visits and must expend more energy
per visit to collect what pollen remains (floral sonication is
thought to be energetically expensive [45]). Correspondingly,
the threshold should move towards being less conservative
about sonicating female flowers. Consistent with this predic-
tion, bees increasingly sonicated rewardless mimics with
experience. Future work will be required to determine how
manipulating the costs and benefits of models and mimics
shapes the effectiveness of Batesian mimicry.
While theory predicts that successful Batesian mimicry
depends on the model and mimic frequency, there have been
surprisingly few empirical tests. In predator–prey systems, a
handful of studies have shown that predation on mimics
increased as the relative frequency of the unpalatable models
decreased [26,60–64]. Conversely, we found that in this
plant–pollinator mutualism, the frequency of floral models
and mimics had little effect on bees’ floral choice. As the fre-
quency of unrewarding mimics increases, so should the cost
of choosing a mimic [28]. We, therefore, predicted bees
should be more conservative and make proportionally more
correct rejections and proportionally fewer correct detections,
to avoid accidentally visiting deceptivemimics. Yet for initially
naive bees, model and mimic frequency did not affect correct
rejections or correct detections. Given that signal detection
theory assumes that receivers are familiar with the phenotypic
distribution, frequency, and costs and benefits of models and
mimics [28,35], we reasoned that initially naive bees may not
have attained sufficient experience. We, therefore, familiarized
the second set of bees with a given distribution and frequency
of models and mimics, but still found no effect of model and
mimic frequency on correct rejections, though there was an
effect on correct detections.

Similarly,we expected that bees givenmore opportunities to
learn mimics (i.e. when the frequency of unrewarding mimics
was relatively higher) would also adjust their rate of correct
rejections and correct detections more rapidly. Surprisingly,
model and mimic frequency had no effect on such learning for
initially naive or experienced bees. Conversely, correct decisions
(combining correctly rejecting mimics and correctly detecting
models) were always frequency-dependent, with bees in more
mimic biased treatments making fewer correct decisions
initially and learning to make correct decisions more rapidly
than bees inmore model biased treatments. Assuming foraging
conditions in our assays reflect those found in nature, bees may
be only modestly sensitive to model andmimic frequency in an
intersexual Batesian mimicry system.

Uniquely, plant species with intersexual floral mimicry
can potentially shape their reproductive success by control-
ling model and mimic frequency. Indeed, sex ratio is often
labile in such plant species (e.g. [36,48,65,66]). However,
prior evidence of frequency-dependence in effective intersex-
ual floral mimicry is conflicting [14,66]. Our results strongly
suggest that from a signal detection perspective, altering
model and mimic frequency provides little advantage to
plants. Future work will be required to determine whether
other components of pollinator behaviour, such as individual
differences in learning, among-plant movement or flower
handing time, are shaped by floral sex ratio in ways that
increase plant reproductive success (such as by increasing
pollen export or outcrossing [14,18,66]).

In conclusion, by examining pollinator responses to both
floral models and mimics in a signal detection framework,
our study provides a greater understanding of how intersexual
floral mimicry is maintained. With increasing experience, pol-
linators made more correct decisions and this effect was
probably driven mainly by learning to avoid mimics, rather
than by improvements in findingmodels. Indeed, bees initially
made high rates of correct detections and increasingly avoided
models with experience. Our results also provide evidence
that imperfect floral mimicry can be adaptive and can involve
the exploitation of pollinator sensory biases [29,35,59]. Our
study lays the groundwork for examining floral features
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contributing to this exploitation in our system and across Bate-
sian floral mimicry systems broadly (see also [36,43]). Finally,
we provide rare and valuable experimental evidence for the
key role of receiver learning in Batesian mimicry.
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