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A

abstract

Mimicry is the phenotypic resemblance of one organism to another because the resemblance is favored
by selection from a signal receiver who perceives the resemblance. We would expect mimics to resemble their
models closely, yet the widespread existence of imperfect mimics confounds this expectation, and has led to
a profusion of possible explanations for the phenomenon. Despite this, we still lack an understanding of
what general evolutionary principles, if any, result in imperfect mimicry. A common approach to this
problem is to test and compare several imperfect mimicry hypotheses with the aim of uncovering such gen-
eral evolutionary principles. We suggest, however, that a better understanding of the hypotheses and clar-
ification of the distinctions or similarities between them is necessary, since each hypothesis makes very
different assumptions, requiring different analytical approaches. Therefore, this review aims to focus fu-
ture studies into imperfect mimicry, and to aid in understanding how to test and compare hypotheses.
First, we summarize and characterize hypotheses from the literature based on their types of explanation,
subjects, and adaptive landscapes they predict for mimics. Next, we review evidence for the hypotheses,
describe desirable characteristics of mimicry complexes for study, and finish by investigating mimicry com-
plexes from past studies.
Introduction

M IMICRY is a phenotypic resem-
blance of one organism (the mimic)

to another organism (the model) that has
evolvedbecause another organismperceives
their similarity and changes its behavior in
such a way that themimic receives a selective
advantage (Ruxton et al. 2004; Dalziell and
Welbergen 2016). The organism that per-
ceives the resemblance is referred to as the
signal receiver (or receiver, the termwe prefer
here; Wickler 1965), operator (Vane-Wright
1980), selective agent (Reiskind 1977), or dupe
(Pasteur 1982).

Mimics are broadly classified as towhether
they are deceptive or honest (for a classifi-
cation of mimicry types, see Jamie 2017).
Deceptive mimicry, as the name suggests,
deceives the signal receiver for the benefit
of the mimic and at the cost of the receiver.
Some intriguing examples of deceptivemim-
ics include moths that are virtually indistin-
guishable from stinging wasps (Boppré et al.
2017), cuckoo eggs with the same size, color,
and patterning as their host’s eggs (de L.
Brooke and Davies 1988), and orchid flow-
ers that emit female wasp pheromones to in-
duce pseudocopulatory pollination by male
wasps (Nilsson 1992; Gaskett et al. 2008). De-
ceptive mimicry can be further separated into
Batesian and aggressive mimicry; Batesian
mimics signal a fitness cost to the receiver,
while aggressive mimics signal a fitness ben-
efit ( Jamie 2017). The majority of research
This content downloaded from 087.07
ll use subject to University of Chicago Press Term
on deceptive mimicry to date has addressed
Batesianmimicry, and this is reflected in our
review; however, aggressive mimicry is also
addressed.

Early theoretical work predicted maxi-
mum benefits from a close resemblance be-
tweenmimic andmodel (Nur 1970). Against
this framework, the existence—and abun-
dance—of imperfectmimics seems paradox-
ical (reviewed in Kikuchi and Pfennig 2013;
Sherratt and Peet-Paré 2017), even to Henry
Walter Bates, who recognized the existence
of imperfect mimicry and that it required
an explanation (Bates 1862). Later studies of
mimicry investigated whether mimics and
models were locked in an evolutionary arms
race, since the presence of mimics reduces
the effectiveness of model warning signals—
the chase-awayhypothesis (Fisher 1930; Shep-
pard 1959; Nur 1970; Turner 1987). More
recently, a wave of explanations has been
proffered to explain the abundance and di-
versity of poor mimics, assuming they must
result from evolutionarily stable mechanisms
that are not addressed by traditional mimicry
theory (Gilbert 2005). This multitude of ex-
planations has led to the thinking that it
is high-fidelity mimicry that requires expla-
nation rather than imperfect mimics (Dal-
ziell and Welbergen 2016; Ruxton et al.
2018). Nonetheless, explaining the physical
differences between mimics and models re-
mains a fundamental question for all mim-
icry complexes.
7.249.094 on November 25, 2019 01:28:16 AM
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Underlying the idea of imperfect mimicry
is the assumption that mimetic accuracy can
be quantified. Accuracy can bemeasured us-
ing a variety of methods that can be broadly
categorized as either receiver responses or trait
measurements. Receiver response assessments
deliberately take receiver senses, cognition,
and/or assessment into account. By con-
trast, trait measurements aim to repeatably
and objectively quantify the difference of a
trait from its “optimal” value (i.e., the corre-
sponding trait from a model), and are inde-
pendent of receivers. The two types of
measurement are complementary, and the
differences between them can be exploited
for hypothesis testing. We address methods
ofmeasurement inmoredetail after introduc-
ing the hypotheses for imperfect mimicry.

Although a multitude of explanations for
imperfect mimicry has been proposed, the
relationships among them is unclear. Some
hypotheses overlap; some propose evolu-
tionary effects that apply to mimics, while
others apply to receivers; and some propose
adaptive explanations and others invoke con-
straints. Additionally, some hypotheses are
broadly applicable while others apply only
to specific mimicry complexes. This review
builds upon and extends previous work by
Kikuchi and Pfennig (2013). Specifically, we
identify additional hypotheses and charac-
terize each hypothesis by identifying whether
it invokes effects on mimics or receivers,
whether the explanation is adaptive or a con-
straint, and describe the evidence for and
against it. We subsequently evaluate which
hypotheses overlap, are logically inconsistent
or untestable, and make recommendations
regarding them. Subsequently, we highlight
the characteristics that might make a mim-
icry system most suitable for simultaneously
testing multiple hypotheses. Finally, we de-
scribe themimics andmodels that have been
most studied over the last 30 years. This re-
view focuses on imperfect deceptive mimicry,
since receiver/mimic dynamics in deceptive
mimicry complexes may differ from those in
honest mimicry complexes. Here, we con-
sider a mimic to be imperfect if one or more
of its mimetic traits differs objectively from
the model traits being mimicked.
This content downloaded from 087.07
All use subject to University of Chicago Press Term
Hypotheses: Summary

and Characterization

To help clarify the relationships between
the imperfect mimicry hypotheses, we sum-
marize them, and identify various characteris-
tics that group or differentiate them (Table 1;
references for each hypothesis are given in
Supplemental Table 1, available at http://
www.journals.uchicago.edu/loi/qrb). Hypoth-
eses differ in whether their explanations are
adaptive, nonadaptive, or whether they ar-
gue thatmimicry no longer occurs. Although
the subject of some hypotheses is the mimic,
for others it is the signal receiver. We further
illustrate the adaptive landscapes for mimics
described by the hypotheses (or, more pre-
cisely, a “selection surface,” which relates in-
dividual phenotypic traits to relative fitness;
Arnold 2003; Table 1; Figure 1).

By an “adaptive” hypothesis, we mean that
the imperfect mimetic resemblance (for hy-
potheses addressing mimics) or the receiver
response to imperfectmimicry (for hypothe-
ses addressing receivers) is solving a fitness
maximization problem for the subject of the
hypothesis (mimic or receiver) and can be
considered optimal (Buss et al. 1998). Non-
adaptive hypotheses, on the other hand, de-
scribe circumstances that result in mimetic
resemblances or receiver responses that are
not optimal for the subject of the hypothesis
(i.e., mimic or receiver; Buss et al. 1998).
Nonadaptive hypotheses are often labeled
“constraints” (Dawkins 1982; Buss et al. 1998),
but we have avoided this term as it is often
used ambiguously or with a different mean-
ing (e.g., Holen and Johnstone 2004).

technical errors

Two of the proposed hypotheses are “non-
hypotheses” that describe classification errors
by researchers rather than evolutionary ex-
planations of imperfect mimicry. The first is
that mimicry has been incorrectly attributed
to an organism, and imperfect mimics are
not functional mimics in nature (the “not
a mimic” hypothesis; Dittrich et al. 1993).
The second is that mimics are considered
imperfect since they are being compared
to the incorrect model (the “ugly duckling”
7.249.094 on November 25, 2019 01:28:16 AM
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Figure 1. Predicted Adaptive Landscapes For Mimics Described By Imperfect Mimicry Hypotheses

Each plot represents the relationship between objective mimetic accuracy and evolutionary mimic fitness. Ob-
jective mimetic accuracy is treated here as a single phenotypic dimension along the x-axis. The vertical dotted
line at the right-most extent of the x-axis indicates the model phenotype that is “perfect” accuracy. The y-axis
represents increasing fitness for the mimic (Wright 1988). Organisms are expected to evolve to maximum pos-
sible fitness. Asterisks mark adaptive peaks for mimetic accuracy. A. The adaptive landscape predicted by tradi-
tional mimicry theory, which does not predict the existence of imperfect mimics. Selection is expected to drive
ever improving mimetic accuracy, resulting in all mimics being accurate mimics (Mappes and Alatalo 1997). The
evolutionary lag hypotheses position mimics below the adaptive peak, but assume they are climbing toward the
peak over time. B. Under tradeoff hypotheses (e.g., Holen and Johnstone 2004; Pekár et al. 2011; Pfennig and
Kikuchi 2012), selective pressure for greater accuracy is competing with selective pressure for reduced accuracy. The
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hypothesis; Sherratt and Peet-Paré 2017).
Rather than describing these as hypotheses,
we argue that studies of imperfect mimicry
should take care to avoid these errors (Reis-
kind 1977; Dittrich et al. 1993; Ruxton and
Schaefer 2011; Grim 2013; Wilson et al.
2013). We have thus excluded these two ex-
planations from Table 1.
Hypotheses: Discussion and Evidence

Here we discuss the hypotheses in greater
detail, together with the available support-
ing evidence. Hypotheses are grouped by
type of explanation (adaptive, nonadaptive,
nonmimic) and to whom the hypothesis ap-
plies (mimic or receiver; columns 1 and 2 in
Table 1).
reasons why imperfect mimicry

is adaptive for mimics

If costs associated with mimicry increase
withmimetic accuracy, then some level of in-
accuracy may be more adaptive than greater
accuracy(Figure1B).Evolutionarygamethe-
ory and signal detection theory have been
used to predict the effects of the cost of mim-
icry on mimetic accuracy, which varies with
ecological factors such as the selection pres-
sure imposed on receivers by mimics, and
the selection pressure imposed on mimics by
failure to deceive an operator (Holen and
Johnstone2004). Evidence thatmimetic traits
carry a cost exists in a number of systems. For
example, mimicry can lead to reduced mat-
ing success, presumably due to a lackof recog-
nition of suitable mating partners (Estrada
and Jiggins 2008; Bybee et al. 2012). Fur-
ther, phenotypic convergence can lead to in-
creased competition for resources between
This content downloaded from 087.07
All use subject to University of Chicago Press Term
mimic and model, as similar body structures
may lead to similar diet and habitat require-
ments (character displacement hypothesis;
Pfennig and Kikuchi 2012).

Morphological constraints could alsomake
imperfect mimicry adaptive. Support for this
idea comes from spiders that mimic ants.
Changes in body shape that are required for
ant mimicry limit the number of eggs in fe-
male spiders, resulting in a tradeoff between
mimicry and fecundity (Gilbert 2005; Pekár
and Jarab 2011a). Similarly, hoverflies in tem-
perate regions may need to compromise be-
tween mimicry of hymenopterans, which
requiresbrightcolors,andthermoregulation,
whichfavorsmelanization(Tayloretal.2016).
Other morphological constraints on mimics
may include limitations on specific foraging
andmatingbehaviors as a result of emulating
model behavior (Cushing 2012).

Another reason that imperfect mimicry
may be adaptive is that multiple model spe-
cies change the selective surface so that phe-
notypes that are intermediate between them
yield greater protection than an accurate
resemblance to a single model (multiple
models hypothesis; Edmunds 2000). Simi-
larly, predators of models may impose costs
on protectivemimetic accuracy, selecting for
less accurate resemblance, as poorer accu-
racy reduces predation by model specialists
while still deterring model-averse predators
(multiple predators; Pekár et al. 2011). The
latter idea has experimental support from
ant-mimicking spiders, where imperfectmim-
ics have a higher chance of survival when con-
fronted by multiple predators compared with
more precise mimics (Pekár et al. 2011).

Signal detection theory has long been
used to build theoretical models of how re-
ceivers impose selection onmimics (Duncan
result is a fitness peak at less than full accuracy. C. According to the kin selection hypothesis, individual selection
favors improved mimetic resemblance, however, a net improvement in population accuracy may increase the total
population attack rate, and this could result in selection for imperfect mimicry in a closely related population
( Johnstone 2002). D. Relaxed selection hypotheses argue that there is no benefit to mimics from greater mimetic
accuracy beyond a nominal threshold. E. Under the developmental constraints hypothesis, organisms are unable
to attain optimal theoretical fitness due to a bias or limitation on phenotypic variation (Maynard Smith et al. 1985).
The dashed vertical line in the plot represents a developmental barrier to the evolution of improved accuracy. In
this case, the asterisk represents a reachable fitness peak. F. Under perceptual exploitation hypotheses, imperfect
mimicry is more effective than perfect mimicry due to signal receiver bias (Howse and Allen 1994; Vereecken and
Schiestl 2008). See the online edition for a color version of this figure.
7.249.094 on November 25, 2019 01:28:16 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



402 Volume 94THE QUARTERLY REVIEW OF BIOLOGY
and Sheppard 1963; Oaten et al. 1975; Getty
1985; Sherratt 2002). Counterintuitively, sig-
nal detection theory predicts that higher ac-
curacy in a Batesian mimic can lead to a
larger proportion of individuals in a popula-
tion being attacked (Oaten et al. 1975) since
predators who cannot reliably distinguish
mimics from models may be less cautious
in sampling prey (Penney et al. 2012). If in-
dividuals within such a population are closely
related, kin selection can lead to selection for
less accurate mimicry (the kin selection hy-
pothesis; Johnstone 2002; Figure 1C). This
hypothesis leads to several predictions: a
population of inaccurate mimics with rare/
weakly aversive models will suffer fewer at-
tacks than a population of accurate mimics;
imperfect mimicry is more likely to occur in
species with weakly aversive or uncommon
models; and imperfect mimicry will be fa-
vored in species with limited dispersal ability
or which live in family groups ( Johnstone
2002). The kin selection hypothesis has lit-
tle empirical supportbeyond theobservation
that poor mimics tend to be more abundant
than both their models and accurate mimics
(Edmunds 2000). Perhaps this lack of evi-
dence reflects the difficulty of finding sys-
tems to which this hypothesis could feasibly
apply.
reasons why poor discrimination

is adaptive for receivers

Receiver behavioral responses help shape
mimetic signals, and so a fundamental evo-
lutionary question iswhydo receivers exhibit
behaviors that result in imperfect mimics?
To answer this, we need to understand how
mimetic signals affect receiver fitness. Many
adaptive hypotheses for receiver behavior
derive frommathematical models that make
very specific assumptions. One of the most
widely used models is signal detection the-
ory, which predicts decision-making under
uncertainsignalreliability(DuncanandShep-
pard 1965; Oaten et al. 1975; Getty 1985;
Sherratt 2002; McGuire et al. 2006; Kikuchi
et al. 2015). Critically, it operates before re-
ceivers make a choice. The theory makes a
number of important assumptions. Receiv-
ers have complete knowledge of: the prob-
This content downloaded from 087.07
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ability distributions of the signals of mimics
andmodels; the relative frequencies ofmim-
ics andmodels; and the costs and benefits of
attacking models and mimics, respectively
(Oaten et al. 1975). Unfortunately for re-
ceivers, however, models and mimics can-
not be told apart with certainty, either due
to noise in the receiver’s sensory or cogni-
tive systems, or actual phenotypic overlap
between models and mimics. To optimally
resolve this problem, receivers must select
a threshold in signal space that maximizes
their expected payoff for responding to po-
tential prey. Effectively, receivers classify all
organisms of interest whose signals fall on
one side of the threshold as models, and
treat all those that fall on the other as mim-
ics. Adjusting the threshold cannot elimi-
nate errors, but it does alter the ratio of hits
(e.g., predator correctly attacks a mimic) to
false alarms (e.g., predator incorrectly attacks
a model; Getty 1985). The theory calculates
the probability that a given phenotype will
be treated as a model, and shows that an im-
perfect resemblance is sufficient. Addition-
ally, as the density of mimics decreases, or
the cost of false alarms increases, lower ac-
curacy in resemblance is required (Duncan
and Sheppard 1965; Sherratt 2002). This ap-
proach provides the mechanistic basis of the
cone-of-protection hypothesis for imperfect
mimicry (Figure 1D).

Signal detection theory falls short when re-
ceivers cannot be assumed to have complete
knowledge about mimics (Sherratt and Peet-
Paré 2017). Incomplete knowledge gives rise
to tradeoffs between information and accu-
racy, as information gathering has a cost
(Abbott and Sherratt 2013; de Froment et al.
2014). Before sampling, receivers can choose
to inspect mimics more closely thereby in-
creasing their knowledge, but this requires
either time or effort (Chittka and Osorio
2007; Chittka et al. 2009). Therefore, we cat-
egorize speed-accuracy tradeoffs as an adap-
tive hypothesis for the existence of imperfect
mimicry. Signal detection theory can be used
to model this, but must be augmented to in-
clude receiver inspection behavior and asso-
ciated tradeoffs.

Other theories of receiver behavior deal
with what happens after receivers make
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choices. For example, after sampling poten-
tial mimics by predators, receivers can update
their estimates of the likelihood that prey of
a given appearance are defended. Some
models of learning are concerned with op-
timal investment in information (Sherratt
2011), so they describe adaptive behavior.
For example, Kikuchi and Sherratt (2015)
considered the question: When should a re-
ceiver learn about phenotypic differences
between two unfamiliar prey, given the risk
involved in sampling the unknown? Sherratt
and Peet-Paré (2017) give a deep treatment
of the logic behind what they call the infor-
mation limitation hypothesis. They suggest
that the optimal receiver behavior is to avoid
sampling potentially risky mimics when pos-
sible, leading to relaxed selection for poor
mimics (Figure 1D).

Poor discrimination by receivers (whether
for adaptive or nonadaptive reasons) pre-
dicts a relaxed selection adaptive landscape
for mimics. It may be indicated by the pres-
ence of high levels of variation in accuracy
(Holloway et al. 2002) or it may be detected
using circumstantial evidence (Penney et al.
2012). Empirical support for relaxed selec-
tion comes from hoverflies, where selection
was found to be relaxed for smaller flies,
perhaps due to a preference by predators
for larger prey (Penney et al. 2012), and for
hoverflymimics of very noxiousmodels (Hol-
loway et al. 2002). However, later studies
failed to support relaxed selection with no
evidence of either greater variation in poorer
mimics (Taylor et al. 2016) or of poorer mi-
metic fidelity in smaller-bodied mimics (Wil-
son et al. 2013). There is empirical support
for relaxed selection in poison frog mim-
ics (Darst and Cummings 2006), coral snake
mimics (Harper and Pfennig 2007; Kiku-
chi and Pfennig 2010a; Akcali and Pfennig
2014), and ant mimics (Pekár and Jarab
2011b; Ramesh et al. 2016).
nonadaptive reasons why mimetic

accuracy is limited

Various authors have listed reasons why
any trait may be nonadaptive or suboptimal
(e.g., Gould and Lewontin 1979; Dawkins
1982;Nesse2005).Developmentalconstraints
This content downloaded from 087.07
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on mimics may prevent the development
of accurate mimicry (Figure 1E). The exact
meaning of developmental constraints has
not been well articulated in the context of
imperfect mimicry. They are typically treated
as a black box that prevents the evolution
of an optimal value in one or more pheno-
typic traits by preventing the phenotypic var-
iation required for selection to act on (e.g.,
Holloway et al. 2002). Mimics that are im-
perfect due to developmental constraints
are predicted to exhibit little phenotypicvar-
iation since they are expected to be sub-
ject to strong purifying selection (Maynard
Smith et al. 1985). Imperfect hoverfly mim-
ics show large phenotypic variation, so are
unlikely to be explained by developmental
constraints (Holloway et al. 2002). If devel-
opmental constraints do not reflect a stable
mechanism for maintaining imperfect mim-
icry (Gilbert 2005), then given sufficient time
and strong selection, such constraints can
be overcome and thus may be more ap-
propriately considered an instance of evolu-
tionary lag.

Mimic speciesmay be poor simply due to a
lack of evolutionary time required to evolve
more accurate mimicry (evolutionary lag;
Figure 1A). The evolutionary lag hypothesis
predicts that poor mimics are ancestral to
good mimics (Pekár 2014), and that popu-
lations of accurate mimics should contain
lower levels of phenotypic variation since
they have been subject to selection for in-
creased accuracy for a longer period of time
(Holloway et al. 2002). Evidence supporting
the perfecting hypothesis comes from some
ant mimics (McIver and Stonedahl 1993;
Pekár 2014), although it has not been sup-
ported in coral snake mimics (Kikuchi and
Pfennig 2010b) or hoverflies (Holloway et al.
2002). The “chase-away” model describes a
possible outcome of the evolutionary lag hy-
pothesis. It argues that mimics and models
are locked in an evolutionary arms race,
with the fitness of models decreased by the
presence of mimics, resulting in selective
pressure on models to decrease the resem-
blance between mimic and model. The re-
sult is that imperfect mimics cannot evolve
fast enough to catch their models (Nur 1970;
Gavrilets and Hastings 1998). No evidence
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of chase-away selection has been found in
a studies of ant-mimicking jumping spiders
(Ceccarelli and Crozier 2007) or coral snake
mimics(Akcalietal.2018);however,evidence
of chase-away selection was found inmimetic
brood parasite eggs (Spottiswoode and Ste-
vens 2011). It is generally thought that Bates-
ian mimics are under greater pressure to
evolveaclose resemblance than theirmodels
are toevolve adistinct resemblance, sochase-
away selection is unlikely to apply tomost cases
ofBatesianmimicry (Nur 1970;Gilbert 2005).
nonadaptive reasons why receiver

discrimination is limited

Since the seminal works of Ryan et al.
(1990), Guilford and Dawkins (1991), and
Endler and Basolo (1998) on receiver psy-
chology and the evolution of signals, research
in this area has exploded (Rodd et al. 2002;
Fuller et al. 2005; Fuller 2009; Zuk et al.
2014), leading to recent studies on the per-
ceptual biases of receivers of imperfect mim-
icry (Bain et al. 2007; Kikuchi and Pfennig
2010a; Penney et al. 2012; Kazemi et al.
2014, 2015; Sherratt et al. 2015; Kikuchi
etal.2016).Multiple layersofperceptualpro-
cesses impinge on the way that receivers in-
teract with the signals of mimics. The most
fundamental of these processes are sensory
adaptations for acquiring information from
the environment, whatever the sensory mo-
dality. Mimetic signals only need resemble
those of their models to the extent that their
shared receivers are unable to detect differ-
ences between them (Ford 1953).

Even if sensory mechanisms can detect el-
ements of signals, cognitive mechanisms may
not be able to integrate the signal elements.
To illustrate this point, predators of coral
snakes probably have innate aversions to
their colored rings (Gehlbach 1972; Smith
1975, 1977). However, how the colored rings
are ordered does not affect attack rates (Ki-
kuchi and Pfennig 2010a). As a result, im-
perfect coral snake mimicry can probably be
explained by a simple, innate bias or cogni-
tive limitation on the part of at least some
predators. Innate biases can also result in
inaccurate mimics with higher fitness than
This content downloaded from 087.07
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perfect mimics. An example of an innate re-
ceiver bias is provided by sexually deceptive
Ophrys orchid flowers, which are pollinated
bymale bees in the act of pseudocopulation.
The flowers are imperfect chemical mimics
of female bees, yet the male bees actively
prefer the orchid’s floral odor over the sex
pheromone of the female bees (perceptual
bias exploitation; Figure 1F; Vereecken and
Schiestl 2008). Similarly, theflower-mimicking
orchidmantisHymenopus coronatus attracts pol-
linators (its prey) at a higher rate than sur-
rounding flowers, possibly due to pollinator’s
preference for larger flowers (O’Hanlon et al.
2014).

Cognitive biases during learning also play
a role in signal evolution. “Cue competi-
tion”describes a psychological phenomenon,
whereby animals do not learn about all as-
pects of a compound stimulus (Pavlov 1927).
For example, color may outcompete size dur-
ing learning, resulting in animals only dis-
criminating color, although size could also
bearelevant factor (Sherratt et al. 2015).Cues
may outcompete each other when more in-
tense (or more salient) stimuli overshadow
less intense (or less salient) stimuli or when
pretraining on one component blocks learn-
ing about a second component (Mackintosh
1971; Oberling et al. 2000). In the context of
imperfectmimicry, cue competition can also
occur. Receivers may preferentially weigh
some components of mimetic phenotypes
over others.Consequently, lower-rankedcom-
ponents are under reduced selection, result-
ing in lower accuracy (Terhune 1977; Kazemi
et al. 2014; Kikuchi et al. 2015; Sherratt
et al. 2015). Conversely, when components
are equal in salience, imperfect mimicry is
not expected to result (Garcia and Koelling
1966;Kazemi et al. 2015;Kikuchi et al. 2016).

It is also possible that receivers respond
to configurations of multiple components
in a nonlinear way, i.e., they do not interpret
themadditively (Howse andAllen 1994; Thein
et al. 2008; Shettleworth 2010). For exam-
ple, the satyric mimicry hypothesis (Howse
and Allen 1994) postulates that imperfect
mimics can slow down predator responses
because they present a combination of com-
ponents that generate an ambiguous signal
(Figure 1F).
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Themechanisms described in this section
have been labeled as nonadaptive since they
result in nonoptimal discrimination by re-
ceivers.However, it is possible that themech-
anisms are adaptive when interpreted from
a wider perspective. For example, sensory
and cognitive traits are metabolically costly
(Laughlin et al. 1998), so the overall cost of
improved discriminationmay be greater than
the benefit. Similarly, perceptual biases may
lead to improved mate choices (Ryan and
Cummings 2013), so they can be beneficial
to receivers. Furthermore, it is also possible
that these receiver behaviors are mediated
by information limitation (sensu Sherratt and
Peet-Paré 2017). If this were the case, then
we might expect an important effect due to
factors such as the costs of gathering infor-
mation (Sherratt 2011; Kikuchi and Sherratt
2015), the relative abundance of models to
mimics (Kikuchi and Sherratt 2015; Sherratt
and Peet-Paré 2017), the number of traits the
receiver evaluates (Sherratt and Peet-Paré
2017), and the complexity of the ecological
community (Beatty et al. 2004; Ihalainen et al.
2012; Sherratt and Peet-Paré 2017; Kikuchi
et al. 2019). And if these factors were shown
to promote receiver biases, then those biases
would be more appropriately listed under
adaptive hypotheses for receiver behavior.
On the other hand, phenomena such as de-
velopmental constraints or evolutionary lag
may underlie these receiver behaviors, mean-
ing they are nonadaptive. To the best of our
knowledge, however, ultimate explanations
for thesemechanismsareyet tobeelucidated.
mimetic breakdown

Mimetic breakdown can occur when the
protection afforded bymimicry breaks down
due to loss of predation (Bates 1862), loss of
models (Pfennig et al. 2001), or changes in
relative abundance of mimics and models
(Brower 1960). Imperfect mimicry may per-
sist if the remaining mimetic resemblance
is selectively neutral, or the resemblance is
maintained by geneflow from regions where
mimicry is active (Harper andPfennig 2008).
This hypothesis overlaps with the “not a
mimic” nonhypothesis, but differs in that
the organisms weremimics in the past or still
This content downloaded from 087.07
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are elsewhere; their existence poses a much
more interesting problem. Mimetic break-
down can be demonstrated by showing that
the appropriate ecological conditions apply
(i.e., loss of predation, loss of models, or
changes in relative abundance of mimics and
models), although such conditions alone are
not sufficient to explain a reduction in mi-
metic accuracy. Mimetic breakdown will re-
sult in high levels of phenotypic variation,
since selection formimicry has been relaxed
(Holloway et al. 2002). The evidence for this
idea is mixed, with support from coral snake
mimics (Harper and Pfennig 2008), but a
lack of support in hoverflies (Holloway et al.
2002).
Measuring Accuracy

As previouslymentioned, accuracy of mim-
icry can be measured by objectively quantify-
ing the physical differences between mimics
and their models or by testing the responses
of a signal receiver. The two approaches are
not interchangeable—rather they quantify
different concepts, and may be used to test
differentpredictions.Receiverresponseshave
been measured by recording the behavioral
responses of signal receivers to mimics or by
electrophysiological investigation (Stökl et al.
2011). The studied receivermay be the signal
receiver from the same mimicry complex as
the mimic (Nelson et al. 2006; Brodmann
et al. 2009; Nelson 2012; Harvey et al. 2018)
or some kind of representative receiver (Dit-
trich et al. 1993). Representative receivers
have included humans (Penney et al. 2012),
pigeons (Dittrich et al. 1993; Green et al.
1999), and even neural network algorithms
(Bain et al. 2007). Additionally, receiver re-
sponse measurements could potentially be
modeled using receiver-specificmodels, such
as color measurements that incorporate re-
ceiver perception (e.g., Maxwell triangle;
Kemp et al. 2015).

Trait measurements include morphomet-
rics to quantify and compare body shapes
(Reiskind 1970; Iserbyt et al. 2011; Penney
et al. 2012), model-independent measure-
ments of color (e.g., segment analysis; Kemp
et al. 2015) and/or pattern (Vorobyev et al.
1998; Endler and Mielke 2005; Taylor et al.
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2013, 2016), image analysis (Dittrich et al.
1993), chemical analysis of chemical mimics
(Brodmann et al. 2009; Stökl et al. 2011),
and quantitative behavioral analysis of mod-
els and mimics (Ceccarelli 2008; Pekár and
Jarab 2011b; Shamble et al. 2017; Skowron
Volponi et al. 2018).

Difficulties in quantifying the accuracy of
a mimic are caused by the need to identify:
the model (Pekár et al. 2017a; Sherratt and
Peet-Paré 2017), which need not be a single
species (Gilbert 2005; Pekár et al. 2017b);
the receiver, which also need not be a single
species (Pekár et al. 2011); and the traits that
can be observed by, and are salient to, the
receiver or receivers (Kunze and Gumbert
2001; Kazemi et al. 2014; Skelhorn et al.
2016; Wang et al. 2017). Assessment of accu-
racymay be further complicated by unknown
interactions between multiple components
of mimicry such as appearance and behavior
(Wang et al. 2017).

The differences between results generated
by different measurements of accuracy may
reveal valuable insights into the evolution
andmaintenance of imperfect mimicry (Dit-
trich et al. 1993), and classes of hypotheses
predict some of these differences. Develop-
mental constraints (Maynard Smith et al.
1985), evolutionary lag (Pekár 2014), and
tradeoff hypotheses (Holen and Johnstone
2004) all predict that mimics will be assessed
as imperfect by both trait measurements and
receiver responses. Within the tradeoff hy-
potheses, the multiple predators hypothesis
predicts that different predators will assess
mimetic accuracy similarly, but some preda-
tors attack models while others avoid them
(Pekár et al. 2011). According to the multi-
ple models hypothesis, trait measurements
should reveal that imperfect mimics are
phenotypically intermediate between two
or more models (Penney et al. 2012). The
relaxed selection hypotheses predict that
signal receivers will not respond differently
to perfect and imperfect mimics; however,
trait assessment will reveal imperfect mim-
icry (Sherratt 2002). Eye-of-the-beholder hy-
potheses predict that different assessment
methods will yield different results. Percep-
tual bias exploitation predicts that signal re-
ceivers will rate accuracy inversely to trait
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assessment up to some limit (O’Hanlon et al.
2014). Stimulus salience predicts that signal
receiver assessments will match trait assess-
ments of some traits but not others, and dif-
ferent receivers may assess accuracy using
different traits (Kazemi et al. 2014). The in-
formation limitation hypothesis predicts that
naïve receivers will rate poor mimics as accu-
rate, and become better able to discriminate
poor from accurate mimics after sampling of
mimics (Sherratt and Peet-Paré 2017).
Simultaneously Testing Multiple

Hypotheses: Considerations For

Experimental Design and Selecting

Appropriate Study Systems

A powerful approach to objectively evalu-
ate theproposedhypotheses is throughdirect
comparison. Since results from tests on a sin-
gle mimicry complex cannot always be gen-
eralized, hypotheses can best be compared
by testing them within a single complex (Ki-
kuchi and Pfennig 2013). Simultaneous hy-
pothesis tests should be designed bearing
in mind that many hypotheses are not mu-
tually exclusive, and may apply to different
systems. In general, however, mimetic sys-
tems suitable for testingmultiple hypotheses
should possess a number of characteristics.
First, mimetic accuracy must be quantifi-
able. Second, the study system should con-
tain variation in mimetic accuracy, ideally
ranging from variation between individuals
through to variation between species and
higher taxonomic levels (Kikuchi and Pfen-
nig 2013). Third, mimics andmodels should
be abundant, hence making it easy to locate
specimens, and more likely to quantify the
desired variation. Finally, ifmodels andmim-
ics are well known and studied, errors such
as misidentification of models (Sherratt and
Peet-Paré 2017) are less likely to occur.

Rarely considered are effects that the num-
ber of mimic and/or model species within a
mimicry complex, or the complexity of the
broader ecological community and environ-
ment, may have on imperfect mimicry and
its study. More species-rich complexes may
provide a greater likelihood of manifesta-
tion and/or detection of rare or unusual phe-
nomena. Furthermore, frequency-dependent
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selection may have different outcomes on
imperfect mimicry in species-rich than spe-
cies-poor systems. For example, evidence
supporting the evolutionary lag hypothesis
is most likely to be encountered in a mimic-
rich system such as ant-mimicking spiders
(Cushing 1997). Conversely, mimetic break-
down may only occur in mimicry complexes
with relatively fewmodel species, such as the
coral snake mimics (Harper and Pfennig
2008), since a model lost from such a system
cannot easily be replaced by an alternative
model species. Finally, as mentioned above,
community structure may also affect how
much information receivers use to decide
which prey to eat (Beatty et al. 2004; Iha-
lainen et al. 2012; Kikuchi et al. 2019).
Therefore, community context should be
taken into account when selecting systems
to test multiple hypotheses.
past subjects of mimicry studies

To assess which study systems are currently
being used in mimicry studies, and what
source of variation these systems embody,
we conducted a literature analysis. We que-
ried the Web of Science (http://apps.webof
knowledge.com) for articles published after
1987 with the topic “Batesianmimicry,”which
returned 642 records (on 28 April 2018).
Duplicates were removed, the records were
shuffled into random order, and then we an-
alyzed the first 65 relevant articles. Articles
such as reviews or opinion pieces, or on unre-
lated topics, were excluded from the analysis.
For each relevant article, mimic and model
taxa and typeof signal receiver were recorded
(Supplemental Table 2, available at http://
www.journals.uchicago.edu/loi/qrb).

Our nonexhaustive literature analysis re-
vealed that mimicry is mostly studied in in-
sects (Figure 2; Supplemental Table 2), the
most-studied order being Lepidoptera, in-
cluding Heliconius butterflies (Bates 1862).
Lepidoptera are both diverse and well stud-
ied, comprising around 10% of all described
living organisms (see the Lepidoptera Tax-
ome Project, available at http://www.ucl
.ac.uk/taxome/), and documented in large
abundance datasets (see the North Ameri-
can Butterfly Association Butterfly Counts,
This content downloaded from 087.07
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available at http://www.naba.org/pubs
/countpub.html). The proximate mecha-
nisms that underlie mimetic resemblance in
lepidopterans are relatively well understood.
For example, themultiple forms of polymor-
phic Batesian mimicry in Papilio dardanus
and P. memnon are thought to be controlled
by a single “supergene” ( Joron et al. 2011;
Merrill et al. 2015), which is a set of genes
that are inherited together due to close link-
age ( Joron et al. 2006). Mimicry studies of
Lepidoptera generally investigate systems in
which both mimics and models are Lepidop-
tera(Figure2).Variationinbutterflymimicry
covers several levels, including between indi-
viduals, between sexes (sexual dimorphism;
Kunte 2009), between different forms of a
species (polymorphic mimicry; Kunte 2009),
between populations (Bates 1862), and be-
tween species (Bates 1862). Predators of Lep-
idoptera are generally assumed to be birds
(Molleman et al. 2010).

Wasps, bees, and ants (Hymenoptera)
were the second most frequently studied or-
der within our study sample (Figure 2; Sup-
plemental Table 1). Hymenopterans were
most commonly serving as models rather
than mimics, although some studies cov-
ered Müllerian mimics with hymenopteran
co-mimics (Wilson et al. 2015). There were
two groups within the hymenopteran sys-
tems: bee or wasp mimics, and flightless ant
mimics. The majority of studied mimics of
beesorwasps arehoverflies (Syrphidae). Syr-
phids are widespread, abundant, and well
studied (Owen andGilbert 1989; Thompson
andVockeroth1989).Amonghoverflies that
mimic stinging hymenopterans, mimetic ac-
curacy varies from poor to good (Penney
et al. 2012), some exhibit polymorphicmim-
icry (Howarthetal. 2000)and,unlike the lep-
idopteranmimics, theymimic diversemodel
taxa (i.e., bees and wasps). Hoverflies are
generally considered to be Batesian mimics,
with insectivorous birds and insects as pred-
ators (Howarth et al. 2000).

Ant mimics are unique within our sam-
ple studies as the only system addressed by
multiple studies in whichmimics andmodels
belong to different taxonomic classes (Fig-
ure 2). Most ant mimics are considered to
be Batesian mimics (McIver and Stonedahl
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1993), with some aggressive mimics (Allan
et al. 2002). Although there aremany known
nonarachnid ant mimics, particularly bugs
and beetles (McIver and Stonedahl 1993),
all antmimics in our nonrepresentative sam-
ple of studies were spiders, with the excep-
tion of a putative case of ant mimicry by
This content downloaded from 087.07
All use subject to University of Chicago Press Term
flowers. Ant mimics are extremely abundant,
widespread, and diverse, with more than
2000 species in 200 genera and 54 families
(McIver and Stonedahl 1993). They exhibit
variation from within-individual variation
(i.e., transformational mimicry; Booth 1990)
through to differences between animal
Figure 2. Mimics and Their Models in 65 Randomly Selected Studies of Mimicry Covering the 30 Years

From 1988 to 2018

Each link is an arrow that points from the taxon of a mimic to that of its model. Mimics and models may be-
long to the same taxon (e.g., amphibians). The width of the link represents the number of studies covering that
relationship. Mimicry systems are categorized on taxonomic class, except for insects, which are broken down into
orders. If multiple mimicry systems were described in a single article, it was split into two (or more) data points.
Diagram plotted in R using the circlize package (Gu et al. 2014). Data used to create the figure are available in
Supplemental Table 2. See the online edition for a color version of this figure.
7.249.094 on November 25, 2019 01:28:16 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



EVOLUTION OF IMPERFECT DECEPTIVE MIMICRYDecember 2019 409
lineages at many taxonomic ranks (McIver
and Stonedahl 1993) and possibly even across
different kingdoms (Lev-Yadun 2009). Ant
mimics vary from poor to very good in accu-
racy of resemblance to their models (Pekár
and Jarab 2011b). Ant mimicry exists across
a range of sensory modalities, including vi-
sual, behavioral, and chemical, and they are
prey to a wide range of different predators
(McIver and Stonedahl 1993). This extreme
diversity and variation renders them suit-
able for comparative studies, allowing a wide
range of hypotheses to be tested within a sin-
glemimetic system. Additionally, the substan-
tial “taxonomicdistance” between antmimics
and their models, as well as between differ-
ent ant mimics, may generate results that
are more generally applicable and less taxon-
specific.However, onlyfive of the 18 hypoth-
eses have been tested and supported by
empirical evidence in studies of ant mimics
while three hypotheses have been tested but
not supported. The remainder of the hy-
potheses have not been tested in ant mimics.
Difficulties in studies of ant mimicry may in-
clude the fact that many ant mimics (and,
indeed, ants) are yet to be described (Cec-
carelli and Crozier 2007; Ward 2007) and,
in many cases, the identity of the organisms
that act as the signal receivers for ant mimics
are not well established (Huang et al. 2011;
Ramesh et al. 2016).

Angiosperms were the only group ofmim-
ics or models studied that were not animals.
Most mimics of angiosperms are themselves
flowers, although there are somenotable ex-
ceptions. The orchid mantis visually mimics
flowers, thereby attracting pollinators that
it preys on (O’Hanlon et al. 2014) and some
coniferophagous (conifer-feeding) beetles
appear to mimic the warning chemicals
emitted by nonedible trees. The beetles may
do this to protect their host tree from attack
by additional coniferophagous insects (Hu-
ber et al. 1999). There are approximately
8000 species of angiosperms that lack floral
rewards, and the majority are orchids polli-
nated by animals that are deceived into ex-
pecting food or other rewards ( Jersáková
et al. 2006, 2009). The mimetic accuracy of
deceptive flowers covers a spectrum from a
highly accurate resemblance to a specific
This content downloaded from 087.07
All use subject to University of Chicago Press Term
model species (Anderson et al. 2005)
through to a vague resemblance to a gener-
alized model (Gumbert and Kunze 2001).
The latter case is considered to be “general-
ized food deception” rather than mimicry
since the system is lacking an identifiable
model (Cropper and Calder 1990; Jersáková
et al. 2009; Ruxton and Schaefer 2011).
Nonetheless, there may be an adaptive cost
to the inaccurate resemblance, sincepollina-
tors areable to learn todiscriminatebetween
nonrewarding and rewardingflowers, so gen-
eralized food deceptive flowers often rely on
naïve pollinators that have not yet learned to
discriminate ( Jersáková et al. 2009).

A number of mimicry systems were ad-
dressed by single studies in our literature
sample (Figure 2). The focus of these studies
generally appears to be the documentation
of a novel and interesting form of putative
mimicry rather than an attempt to identify
universal principles. These studies included
morphological and behavioral mimicry of
hairy, brightly colored, and toxic caterpil-
lars by bird nestlings (with modified feathers
that resemble the hairs of the caterpillar and
slow “caterpillar-like” movements; Londoño
et al. 2015), auditory mimicry of rattlesnake
warning signals by birds (Straneck 1999),
and chemical mimicry of trees by beetles
(Huber et al. 1999).
Conclusion

Mimicry, despite being a topic of interest
and study for well over 150 years, is still not
fully understood. Finding general principles
governing thewidespread existence andper-
sistence of imperfect mimicry is a particular
challenge that will require broad comparative
studies coupled with a clear understanding
of the relationships between the hypotheses
and the subjects and types of phenomena
they describe. To provide results that are
applicable beyond a single taxon, studies
should encompass variation in mimetic ac-
curacy at multiple levels (e.g., between indi-
viduals, between populations, and between
species), multiple types of mimicry across
multiple sensory modalities, broad taxo-
nomic range, and a wide variety of models.
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The phenomenon of imperfect mimicry
is an ideal model system for understanding
how the phenotype is shaped by adaptive
and neutral processes and constraints. Im-
perfect mimics, regardless of taxon, present
us with the rare opportunity of knowing the
“optimal”mimetic phenotype: perfect mim-
icry. Comparing “optimal” and actual phe-
notypes allows us to identify the processes
that result in the observed evolutionary path-
ways. Our hope is that this review sparks
more focused and systematic testing of im-
This content downloaded from 087.07
All use subject to University of Chicago Press Term
perfect mimicry hypotheses and aids the re-
development ofmimicry theory, leading to a
deeper understanding of the principles of
evolutionary biology.
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