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Novel behaviours are the raw material of cultural evolution, yet we do not
have a clear picture of when they are likely to arise. I use a state-dependent
model to examine how individual age and energy reserves interact with the
abundance of known and novel prey to promote dietary innovation (incor-
porating a new food item into the diet). I measure innovativeness as
persistence in attempting to capture novel prey. I find a trend towards
greater persistence among younger individuals. Decreased abundance of
known prey and increased abundance of novel prey also favour persistence.
However, many exceptions to these trends occur. These exceptions are criti-
cal because they may explain inconsistencies among studies of animal
innovation. Care must be taken in experiments to control for multiple factors
relevant to an animal’s energy budget and foraging opportunities. We may
learn more about innovation in experimental contexts by (i) manipulating
the abundance of novel and familiar food resources, (ii) directly measuring
animal age and condition, and—where possible—(iii) fitting nonlinear
models to innovative behaviour. Results indicate that selection for
persistence may also favour neophilia.
1. Introduction
Ecological innovation happens when an animal learns to use a new resource or
to exploit a current resource in a new way [1,2]. Innovations are hypothesized to
impact diverse ecological and evolutionary processes [3–5]. Given these myriad
consequences, we need to know when animals are most likely to innovate.
However, there is no consensus on the factors that govern innovation. Possibi-
lities include an animal’s state, ecological circumstances and personality [6,7].
Evidence supports multiple hypotheses, although with a low degree of consist-
ency [6,8]. Differences between methodologies may explain some variation, but
given the sheer quantity of variation, it seems plausible that many hypotheses
may be only conditionally true. For example, ‘hungry individuals should inno-
vate’ [7] could be true when ecological circumstances are poor, whereas
‘individuals with extra resources should innovate’ [9] could be true when eco-
logical circumstances are good. We need theory to reconcile the conflicting
predictions of simple linear hypotheses across a broad range of individual
states and ecological conditions.

In this study, I integrate individual state (age and energy reserves) with eco-
logical variables (known resource availability and ecological opportunity to
innovate) into a theoretical model that predicts innovativeness. I focus on inno-
vations in foraging behaviour where an animal adds a novel item to its diet.
Dietary innovations are widely observed (e.g. [10,11]) and subjected to exper-
imental study (e.g. [12,13]). They are also directly connected to community
ecology. Contemporary challenges such as biological invasion or reintroduction
can often be recast as problems where innovation changes the outcome of
predator–prey interactions [14–16]. Theory on dietary innovations will therefore
be a useful tool for empiricists. Furthermore, the foundations of community
ecology are based on consumer–resource dynamics [17]. Knowing when new
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resources are likely to be added to a consumer’s diet will help
further weave innovation and social learning into ecological
theory [18–20].

‘Innovation’ also encompasses novel behavioural patterns
[1,11], sometimes called ‘technical innovations’ [11,21].
Technical innovations are thought to be more cognitively
demanding than opportunistic dietary innovations, and they
depend on behavioural repertoire diversity, motor develop-
ment and physical strength [22]. Technical innovations will
need separate theory that considers such traits and has a
larger range of behavioural possibilities than simply accepting
a novel prey item.

The present study is built on two branches of theory:
models of risk-taking (reviewed in [23,24]) and the
exploration–exploitation trade-off [25,26]. In formal models
of risk-taking, a risk-prone animal prefers a high-variance
option over a low-variance option when the two options
have equal expected rewards [23,27]. The mean and variances
are known to the animal. If an animal chooses the high var-
iance option, it may go hungry, but it could alternatively
experience a string of good luck during which it has (tempor-
arily) higher gains. It is often assumed in risk-taking models
that an animal has a level of energy reserves it must maintain
to survive [27]. If the relationship between energy reserves and
survival is nonlinear, the value of the two options will not be
equal. An animal will be favoured to choose either the high- or
low-risk option depending on, among other things, its energy
reserves. Similarly, energy reservesmay determine an animal’s
choice between a known food option or an unknown food
option. However, an animal exploring unknown food also
faces uncertainty (i.e. the parameters that describe an option,
such as mean and variance, are not known), which is distinct
from a known risk. To model how an animal would best
manage uncertainty, I use theory developed to solve the
exploration–exploitation trade-off.

The exploration–exploitation trade-off is a general problem
of whether to use only known information to make decisions
(being ‘greedy’ by maximizing current expected reward [28]),
or invest in exploration that may carry future benefits because
it improves the information upon which decisions are based.
An instance of this problem is the ‘bandit’ model, where an
actor chooses between different options with unknown rates
of return, learning from each choice it makes [29]. Bandit
models have been used to model processes such as learning
the value of foraging patches [30,31], exploring potentially
unpalatable prey [32] and neophobia [33]. A key feature of
bandit models is that the actor’s estimate of the average
payout of each option changes as it samples, which makes it
distinct frommostmodels of risk-taking (but see [34]). Sherratt
&Morand-Ferron [33] made a bandit model of neophobia that
examines how an animal would optimally respond to novel
prey. Their approach captured the exploration–exploitation
trade-off, but did not include energy reserves as a state vari-
able. By combining bandit models and models of risk-taking,
we can ask how animals with different ages and energy
reserves might choose between familiar and novel options.

I model a scenario where a predator can forage on a
known, familiar type of prey, or explore an unknown, novel
type of prey. I include information about the abundance of
each prey in the predator’s decision-making process. There
are two specific objectives of this study. First, I quantify how
innovative predators are at different ages and energy reserves.
Second, I determine how innovativeness changes with the
abundance of familiar and novel prey. The specific aspect of
‘innovativeness’ that I focus on is persistence. I define persist-
ence as the number of attempts on the novel prey without
success, i.e. investment in innovation without reward. These
unsuccessful attempts are part of the exploration process for
the predator. Assuming all predators are equal in their
capacity to capture the novel prey, the most persistent are
the most likely to innovate (i.e. succeed) across multiple
attempts. I make no assumptions about intrinsic innovative-
ness as an aspect of intelligence or creativity. In many
systems, persistence increases the odds of an animal becoming
an ‘innovator’—i.e. successfully capturing novel prey [35]. In
empirical studies of innovation in natural populations, dietary
innovations are often operationalized as reports of species
feeding on novel prey items (e.g. [10]), so this definition
is compatible with existing literature. Persistence is also
relatively easy to measure in an experimental setting.
2. Methods
I assume a predator makes a sequence of foraging decisions over a
finite time period. Time is divided into discrete time steps, where
time step is denoted by t, and bounded so that 0 < t≤ tmax. The
predator has energy reserves x. It is unable to assimilate more
energy if its reserves reach xmax. It dies if its reserves fall below 0
(so it achieves 0 fitness). The predator loses m energy units each
time step due tometabolism. I assume that predator fitness is deter-
mined by its reproductive output. Reproduction only occurs if it
reaches tmax with energy reserves 0 < x≤ xmax (i.e. semelparity).
Its fitness is a linear function of x at tmax, so that if it survives to
tmax, it has fitness equal to x, otherwise it has fitness of 0.

I assume there are two types of prey that the predator can
potentially forage on. In every time step, it can hunt a known,
familiar prey (type 1), although its hunting success is not guaran-
teed. For example, a crow could seek rodents, but not reliably
encounter rodents during a time of scarcity. However, some-
times, the predator randomly encounters an unfamiliar, novel
prey (type 2) that it can choose to pursue, abandoning its quest
for familiar prey during that time step. For example, investing
time in trying to handle a novel, toxic cane toad will rob a
crow of the opportunity to attack rodents. Thus, in time steps
when it encounters a novel prey, the predator is briefly faced
with a simultaneous choice (figure 1). By allowing simultaneous
choice between the two prey, I can vary their abundances
independently from each other.

I assume that if the predator does not encounter a novel prey
in a particular time step (which happenswith probability 1− q2), it
always hunts the familiar prey. When the predator hunts for the
familiar prey, its probability of successfully locating it is q1. I
assume q1 is known to the predator. Furthermore, because the
question of interest is how abundance affects innovation, I make
the simplifying assumption that if the known prey is encountered,
it is always killed. However, at each time step in which it encoun-
ters a novel prey (probability q2), the predator must make a
choice of whether to pursue the novel prey or the familiar prey.
The predator cannot attack the novel prey unless it is randomly
encountered. The probability of encountering novel prey q2 is
known to the predator. I assume that q1 and q2 are fixed. This
assumption means that the decisions the predator makes between
0 and tmax take place on a faster timescale than changes to
prey populations.

In contrast to q2, the probability of successfully killing the
novel prey s is uncertain and must be inferred. Building on a
model by Sherratt [32], I assume that the predator uses Bayesian
inference to estimate s. Bayesian inference uses prior beliefs and
experiential information to estimate a posterior probability,
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Figure 1. The sequence of events and decisions a predator (crow) faces in the model. First, it does or does not encounter a novel prey. Second, it chooses between
hunting known (rodent) and novel (cane toad) prey, or defaults to hunting known prey. Third, it either succeeds or fails in capturing prey. Fourth, its energy reserves
(and informational state, if relevant) are updated according to the outcome of events. See main text and table 1 for variable definitions.
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Figure 2. Change in the predator’s estimated probability of success on the
novel prey ps(n,r) as a function of the number of prey it has sampled.
In the solid line, all of its attempts are unsuccessful. In the dashed line,
it experiences a stochastic sequence of successes and failures that approaches
the true expected value of success (in this case, 0.5).
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which makes it ideal for adaptive models of learning [36,37]. I
assume a Beta distribution to represent the predator’s prior
belief about s. The Beta distribution has parameters αs and βs
and, initially, an expectation equal to αs/(αs + βs). After observing
r successes in n trials, the Beta distribution can be updated,
yielding a posterior distribution for the expectation of s:
ps(n,r) = (αs + r)/(αs + βs + n). Assuming priors of αs = βs = 1, we
can conveniently write the function for the predator’s estimate
of success with novel prey as ps(r,n) ¼ (1 þ r)=(2 þ n). These
prior values yield a naive expectation of πs = 0.5, but beliefs
about s are rapidly modified by experience (figure 2). This
method of modelling learning about the probability of success
in foraging has been discussed elsewhere [30–32,36,38,39].
For this reason, I do not explore it in detail, e.g. by adopting
alternative priors.

Because the predator knows the probability of a successful
hunt if it chooses the familiar prey (encounter = q1, kill prob-
ability = 1), but must learn about the probability of making a kill
if it chooses the novel prey (encounter = q2, kill probability esti-
mated as ps(n,r)), the predator’s choice constitutes a one-armed
bandit problem [28,40,41]. Note that because the predator loses
m energy per time step, if it fails to capture prey, it has a net fitness
loss. Thus, novel prey that are difficult to capture could, for some
applications, be viewed as having a defence that penalizes attacks.

When the predator encounters a novel prey, I assume the pred-
ator chooses the behaviour (attack known, attack novel) that
maximizes its expected fitness, given its current age t, its current
energy reserves x, and its current estimate of s expressed as
ps(n,r). The optimal choice depends not only on the prey type
that yields the highest expected reward at the current time step t,
but also on the potential future benefits that the predator might
realize between time t + 1 and tmax from learning more about the
novel prey. For example, the predator may expect that the novel
prey is no better than the familiar prey, but if the novel prey
turns out to be easier to capture than expected, the predator will
profit from this information in the future. To find optimal actions
in a series of sequential decisions based on state, where future
states are determined by those decisions, dynamic programming
is the standard method [27,36,42].

Stochastic dynamic programming uses a recursion equation to
describe the current expected payoffs as functions of future states
that may arise due to decisions made or random events that
occur. I write the payoff to the predator at each timestep as
z(t,x,n,r), where z is the expected fitness given state variables t, x,
n, r. At tmax, z = x. The dynamic programming equation that
solves for z can be used to determine the predator’s optimal
action in any state. It is as follows:

z(t,x,n,r) ¼ (1� q2) � z1(t,x,n,r) þ q2 �max[z1(t,x,n,r),z2(t,x,n,r)]:

ð2:1Þ

The first term describes the probability of not encountering
the novel prey (in which case the predator pursues the known
prey) multiplied by z1(t,x,n,r), the expected payoff for attacking
the known prey. The second term describes the probability
of encountering novel prey multiplied by the maximum of



Table 1. Parameters and variables used in this study.

term definition

t number of time steps over which the animal’s

behaviour is evaluated, e.g. its lifespan

(0≤ t≤ tmax)

x animal’s energy reserves (0 < x≤ xmax)

m animal’s metabolic rate

q1 probability of encountering known prey

q2 probability of encountering novel prey

s true probability of successfully killing novel prey

(must be inferred)

ps(n,r) posterior expectation of s

n number of novel prey the predator has encountered

and attempted to attack

r number of attacks on novel prey that have resulted

in a kill

αs, βs priors for successfully killing novel prey

b1a, b1b, b1c possible payoffs for killing known prey

p1a, p1b, p1c probabilities of each payoff for killing known prey

b2a, b2b, b2c possible payoffs for killing novel prey

p2a, p2b, p2c probabilities of each payoff for killing novel prey

z(t,x,n,r) expected payoff for a given set of state variables

t, x, n, r

z1(t,x ,n,r) expected payoff for attacking the known prey, given

t, x, n, r

z2(t,x ,n,r) expected payoff for attacking the novel prey, given

t, x, n, r
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the expected payoffs for attacking familiar prey or novel prey
(z2(t,x,n,r)).

To calculate z1(t,x,n,r), recall that the predator has chance q1
of encountering (and killing) the known prey. If it does, it obtains
a benefit with possible values b1a, b1b and b1c, which have prob-
abilities p1a, p1b and p1c, respectively. I assume that all these
quantities are known to the predator. I use this distribution of
values to avoid artefacts that may arise when running a dynamic
programming algorithm on a grid of discrete values [27]. Recall
that whether or not the predator is successful, it pays metabolic
cost m. The value z1(t,x,n,r) does not include changes to n or r
because the predator gains no information by sampling the
known prey.

The calculation of z2(t,x,n,r) is similar. The predator has the
chance s of successfully capturing the prey. If it does, it obtains
a benefit with possible values b2a, b2b and b2c, which have prob-
abilities p2a, p2b and p2c, respectively. Regardless, however, it
will improve its estimate of s, as reflected by updates to n, r if
it is successful, or n alone if it is unsuccessful. Again, the predator
always pays the metabolic cost m. Equations for z1(t,x,n,r) and
z2(t,x,n,r) are

z1(t,x,n,r) ¼ q1 � [ p1az(tþ 1,x�mþ b1a,n,r)
þ p1bz(tþ 1,x�mþ b1b,n,r)
þ p1cz(tþ 1,x�mþ b1c,n,r)]
þ ð1� q1Þ � z(tþ 1,x�m,n,r), ð2:2Þ

z2(t,x,n,r) ¼ ps(n,r) � [ p2az(tþ 1,x�mþ b2a,nþ 1,rþ 1)

þp2bz(tþ 1,x�mþ b2b,nþ 1,rþ 1)

þp2cz(tþ 1,x�mþ b2c,nþ 1,rþ 1)]

þ (1� ps(n,r)) � z(tþ 1,x�m,nþ 1,r): ð2:3Þ

I assume that if z1(t,x,n,r) ¼ z2(t,x,n,r) (within a floating
point margin of error), then the predator chooses randomly. A
description of all terms used in this study is given in table 1.

To solve the dynamic programming equation, one works
backwards from tmax, considering the predator’s fitness at all
possible combinations of the state variables t = tmax, x, n and r.
The resulting values are used to find the optimal actions at earlier
time steps. This process is called backwards iteration [27,36]. To
calculate quantities in addition to the optimal actions and their
associated fitness values, one performs forward iterations
[27,36], which are Monte Carlo simulations where one starts a
predator at a particular combination of t, x, n and r, and then
measures the quantities of interest as it encounters prey and
makes decisions at each additional time step. The predator’s be-
haviour during the forward iterations is governed by expected
payoffs looked up from the array of backwards iterations.

To measure how persistent predators are in different states, in
forward iterations, I set the actual probability of success to 0, and
set q2 to 1 so that novel prey are always encountered. For an indi-
vidual in state t, x, the possible number of novel prey it can attack
ranges from 0 to tmax− t (the number of remaining time steps).
At each starting combination of t, x where an individual attacks
its first novel prey, I find the total number of novel prey n it
samples over the remaining time. This includes breaks where it
samples known prey, which have stochastic payoffs. I average
n across 30 runs. This gives the mean persistence of an individual
starting in state t, x in the face of repeated failure when it attacks
novel prey.

The central question of this paper is how state-dependent
decisions interact with ecology. To answer this, I repeat the analy-
sis of persistence over a grid of values for q1 and q2 from 0.1 to 0.9. I
interpret the parameter q1 as representing the abundance of
the known prey (it could also represent the probability of both
encountering and successfully consuming the known prey, or the
probability that the known prey provides a nutritional reward).
The essential point is that q1 governs how much the predator can
rely on the known prey to increase its energy reserves. When q1
is very low, the predator risks starving if it does not have any
other options. With the novel prey, encounter rate is described by
q2 and hunting success is described by s, so q2 is straightforwardly
interpreted as abundance of the novel prey.
(a) Sensitivity to the fitness function
It is important to test sensitivity to the quantity that is maximized
in a dynamic programming equation [27]. When fitness is pro-
portional to energy reserves (semelparity), it can incentivize
much risk-taking even late in life to achieve maximal reserves x
at tmax. Maximizing reserves at the terminal time is not realistic
for animals that innovate on timescales shorter than their entire
lives. Instead, it might be more useful to model a fixed period of
time during which an animal must simply survive. For example,
an animal might need to survive the winter by foraging primarily
on familiar foods until new ones become available. Alternatively,
it might need to exploit an abundant and known, yet transient
resource like an irruption of butterflies, while exploring novel
prey to switch to when the butterflies die [43]. Furthermore, a
short, survival-maximizing timescale will be easier to work with
in many experimental settings as long as it corresponds to the
actual ecology of the study organism. Some early risk-taking
may be favoured by survival maximization, but not so much as
with semelparity.

To implement a step function for survival at tmax, I assumed
the terminal fitness function has the value 1 if 0 < x≤ xmax, and 0
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Figure 3. Heatmaps of persistence behaviour as a function of time and energy reserves at four combinations of known (q1) and novel (q2) prey abundance. The
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otherwise. All other aspects of this model remained identical to
the one above. This means that as above, between t = 1 and t =
tmax− 1, energy reserves were constrained between 0 and xmax

(because anytime x falls below 0, the predator dies and achieves
0 fitness).

Across simulations, I used the same parameter values for
consistency, except those that were the targets of specific
analyses: tmax = 30, xmax = 20, m = 1, α = β = 1, b1a = b2a = 1, b1b =
b2b = 2, b1c = b2c = 3, p1a = p2a = 0.1, p1b = p2b = 0.8, p1c = p2c = 0.1.
The distribution of benefits was chosen to be approximately
normal with a mean of 2. Note that there is no difference to
the distribution of benefits provided by familiar and novel
prey. It is only the predator’s uncertainty about the novel prey
that causes its behaviour towards the two to differ.

(b) Interpretation of the predictions made by a
dynamic programming algorithm

The behaviours of an animal predicted by a dynamic program-
ming algorithm may be dizzyingly complex. Each decision
integrates a massive number of calculations. However, using
dynamic programming to model behaviour does not require
that an animal be able to make such calculations. Instead, the
algorithm predicts behaviours that might result frommany gener-
ations of selection in particular contexts—such aswhat to dowhen
one encounters something new. The target of selection may in fact
be a simple ‘rule of thumb’ that approximates more complex rules
[44], or intricate systems of neural and hormonal feedback that
can produce behaviours of arbitrary complexity in response to
an animal’s internal and external environment.
3. Results
(a) Persistence with novel prey: tendency to innovate
Forward iterations reveal complex relationships between
persistence, age and energy reserves. Figure 3 shows four
cases that capture all these relationships, while electronic
supplementary material, figure S1, gives a more continuous
picture. A result that emerges is that generally, young individ-
uals persist more in sampling novel prey, despite repeated
failure (left sides of the panels in figure 3 are more shaded).
Conversely, older individuals are usually less persistent because
they have less time remaining to benefit from anything they
learn about novel prey. All individuals with energy reserves
close to 0 are also less persistent because they cannot afford
extensive sampling without risking starvation (light or white
regions on bottoms of figure 3 panels).

Persistence generally decreases with the abundance of
known prey, and increases with the abundance of novel
prey (in figure 3 and electronic supplementary material,
figure S1). In some cases, there is a local or global maximum
in persistence for younger individuals with low to moderate
resource levels (e.g. figure 3, top left panel; electronic sup-
plementary material, figure S1). This ‘children in the middle
class’ tendency to persist stems from a lack of incentive to
innovate among individuals with somewhat higher energy
reserves, and a lack of necessary buffering against risk in
individuals with lower energy reserves. For some combi-
nations of known and novel prey abundance, there are
multiple intervals of energy reserves x over which individ-
uals of the same age t are either innovative or not. For
example, in the top left panel of figure 3, individuals at
t = 1 are innovative at moderate-to-low and high energy
reserves, whereas this pattern occurs at older ages in the
top right panel. Additionally, sometimes older individuals
with moderate energy reserves persist more than young
ones with the same energy reserves (e.g. the bottom of the
shaded region in the top right panel of figure 3). This prob-
ably happens because young individuals are under
selection to avoid the lower bound on energy reserves (star-
vation) and still have the chance for a run of good luck
with known prey. Older predators choose the novel prey
because it has higher potential rewards. That older individ-
uals ever persist more than younger ones is somewhat
counterintuitive, because older individuals have less time to
benefit from any favourable discovery about the novel prey.
Recall from equation (2.1) that whether an individual decides
to explore novel prey or pursue known prey depends on the
balance between expected payoff from the known prey and
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the potential value of the novel prey. The model shows that
which of these quantities is greater can shift nonlinearly
with age.

A region of t, x space where individuals are predicted to
innovate does not necessarily mean that innovation will actu-
ally occur there. Each individual must begin life at t = 0, and
depending on the energetic reserves it starts life with, may
or may not be likely to enter a region of t, x space that favours
high persistence. To illustrate this point, I simulated individ-
uals starting life at t = 0 with initial energy reserves equally
distributed along the interval [1, xmax]. I measured behaviour
over 1000 runs for each starting x. Figure 4 shows where most
innovations occurred in t, x space, and corresponds to the
ecological conditions in the top left panel of figure 3. Individ-
uals that started in with energy reserves that favoured
attacking novel prey quickly became innovators at early time
steps (dark left part of shaded regions in figure 4). At later
time steps, therewere few individuals from those starting con-
ditions left to become innovators. Instead, new innovators at
later time steps mostly come from starting states that did not
favour innovation (arrows in figure 4). Movement into regions
that favour innovation gives those regions dark peripheries
and pale interiors.

This analysis shows that the life history of a species (e.g.
how it allocates resources to individual offspring) may influ-
ence the emergence of innovations in a population. A species
that prioritizes provisioning of young at independence may
have a different tendency to innovate than one where young
achieve independence with minimal energy reserves. This
will be important for some ecological applications, for example
when innovations can be discovered within subpopulations of
an expanding metapopulation.

(b) Changes to the fitness function: terminal survival,
or fitness proportional to lifespan

In many cases, it seems probable that an animal will be
adapted to explore and innovate on shorter timescales than
its entire life. When this is true, the animal is assumed to
maximize survival rather than terminal energy reserves. In
examining this fitness function, I found that the most obvious
difference was that once an animal accrued energy reserves
x . m(tmax � t), it chose randomly (electronic supplementary
material, figure S2). Achieving this threshold of energy reserves
can be seen as the survival-maximizer’s ‘goal’. This leads to
greater persistence among individuals with high energy
reserves, at least in animals that are too young to have reached
the threshold. At high abundances of known prey, individuals
either choose known prey, or choose randomly.
4. Discussion
The major contribution of this study is to make predictions
about which individuals (in terms of age and condition) are
most likely to innovate as a function of the probability of
encountering known and novel prey. Individuals tend to be
more persistent with novel prey when (i) they are younger,
(ii) known prey are less abundant and (iii) novel prey are
more abundant. However, there are many exceptions to these
general trends. They may have important implications for
how we interpret inconsistencies between empirical studies
or design theoretical studies. First, the effect of the abundance
of known prey tends to trump the abundance of novel prey
(electronic supplementary material, figure S1), so new theory
or experiments need to take this into account. Second, and cri-
tically for empirical work, there can be multiple states that
favour innovation in a population, such as young individuals
with high energy reserves and young individuals with
low-to-moderate energy reserves (top left figure 3). These non-
linear wrinkles may, in some cases, explain meta-analyses that
fail to find clear support for simple hypotheses such as
‘younger, hungrier individuals innovate’ or ‘individuals in
better condition innovate’. The present study reveals that
these hypotheses, which may appear mutually exclusive, can
be true in the same population at the same time. Experiments
would have higher chances of finding a linear relationship
between age and energy by choosing individuals with particu-
lar ages or conditions, and carefully manipulating the prey
abundance that subjects experience. This could be done by
creating conditions that mimic, for example, the bottom
panels of figure 3. Such experiments would maximize our
power to relate these variables to innovation. If a linear effect
of age or energy reserves is found where they are predicted
by the model, experiments could subsequently test levels of
prey abundance that are predicted to break this pattern. By
using both these approaches, we could confirm the roles of
age, state, and prey abundance in innovation, and then begin
to explore complex patterns generated by their interactions.
Third, when an animal maximizes terminal survival, if it has
sufficient energy reserves not to starve by the end of the time
period, it may guess randomly (it could also do nothing,
which I do not consider above). Results that appear noisy or
inconclusive, or disagree with the results of different studies,
may not rule out that a particular state variable influences
innovation, but rather warrant further scrutiny of the fitness
function.

In some systems, it may be challenging to manipulate
how an animal perceives the ecological availability of prey,
or to do so over the relevant values. This study suggests
that it would nevertheless be worthwhile to test for nonlinear
relationships between innovation and state. This is critical to
understanding what factors are most important in promoting
innovation across study systems. To illustrate why, consider a
recent meta-analysis that found personality is an important
determinant of innovation, where more exploratory or neo-
philic individuals innovated more [6]. It seems probable
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that this is true in some species. However, linear relationships
are much more often tested in experiments than nonlinear
ones. If the relationship between personality and innovation
is linear, but the relationship between age or condition
and innovation is nonlinear, meta-analysis will reveal more
significant effects of personality because only linear relation-
ships are tested. Most researchers wisely do not test nonlinear
hypotheses without an a priori reason to do so, but I argue
that this study provides such a reason, at least for testing
the effects of age or condition on innovation. Testing non-
linear hypotheses will require approaches that penalize the
number of parameters in the best-fitting model [45,46]. It
will also place a premium on detailed knowledge of the natu-
ral history and behaviour of the study species to ensure that
the experiment meets the assumptions of the hypothesis
being tested. When testing nonlinear relationships, the avail-
ability of known and novel food resources should be reported
along with subjects’ ages and conditions.

This model also makes predictions about how an individ-
ual’s level of dietary innovation may change with prey
diversity. Due to the rapid expansion of dimensionality when
including many state variables in dynamic programming,
explicitly modelling a predator’s learning about multiple
prey is challenging [36]. However, modelling multiple prey
may not be necessary to answer the question of when an
animal should stop adding new items to its diet. When mul-
tiple novel prey are available to explore, each successful
innovation may result in diminishing returns on future inno-
vations. In the present model, if a predator repeatedly
samples a novel prey item until its expected success is fairly
certain, that prey item could be added to the category of
‘known’ prey. This would have an effect much like increasing
the value of q1. Increasing q1 tends to decrease an animal’s per-
sistence with novel prey. We might therefore expect that
innovation decreases with the number of innovations an
animal has already acquired until it ceases altogether. This is
predicted to be true irrespective of the number of additional,
novel types of prey available as long as diversity is not inver-
sely correlated with the abundance of each option. Individual
specialization in falconsmay arise through such a process. Sev-
eral species of falcon have been recorded to each prey upon
dozens of kinds of birds, but individual falcons are often
highly selective (e.g. [47,48]). This may happen because experi-
ence makes falcons more successful at capturing a particular
species of prey [48]. Once a falcon can meet its energy needs,
it may have little incentive to incorporate additional bird
species into its diet.

There are many other factors that have been hypothesized
to influence innovation that the present model does not
include. The model does not consider the social network an
individual occupies. Some hypotheses for how state influences
innovation operate through social interactions. For example,
the hypothesis that energy reserves govern innovation has
been interpreted to mean that more dominant individuals—
presumably in better condition—will be more innovative [6].
Conversely, others have hypothesized that individuals that
are more successful in scramble competition against conspeci-
fics—presumably dominant—may have less motivation to
innovate [7]. If social networks have no influence on foraging
other than to enhance or limit energy reserves, then the present
model may produce useful predictions (although it would be
helpful to directly measure condition, rather than using net-
work position as a proxy). However, in contexts where social
network position is correlated with other behaviours such as
cultural conformity [49], the assumptions of this model do
not hold. Additionally, some authors assume that the
amount of effort that an individual invests in innovation
trades off with investment in social learning (e.g. [18,50]).
When this is true, it may also violate the assumptions of this
model, as social learning could reduce the predicted level of
investment in innovation. It could also lead to producer–
scrounger dynamics when some individuals innovate and
others specialize in copying [51]. Furthermore, future work
that considers changes in prey abundance on the same time-
scale as behavioural innovation—for example when a novel
prey rapidly invades a new range or known prey become
depleted—would be welcome.

This model is closely related to that of Sherratt & Morand-
Ferron [33]. Sherratt & Morand-Ferron [33] used a dynamic
approach to model an animal’s neophobia or neophilia
towards a novel object. Their state variables included an ani-
mal’s age, number of encounters with the novel object, and
experiences (good or bad) with the novel object. Their model
used Bayesian inference to estimate the probability of encoun-
tering the novel object and its expected payoff. They found that
when animals maximized terminal payoff, younger animals
should always be more neophilic, in the sense that they
should be more willing to interact with novel objects that
carry a higher cost–benefit ratio. They also found that the age
at which an animal should ignore novel objects increases
with its lifespan and decreases with the cost–benefit ratio.
Their result that younger individuals are more willing to
take risks with a novel object is similar to what I find in
most, but not all, circumstances (e.g. Figure 3; electronic sup-
plementary material, figure S1). However, Sherratt &
Morand-Ferron [33] found that when animals pay a survival
cost to making mistakes and accrue fitness continuously (i.e.
iteroparity), young and old individuals were more risk-prone
than middle-aged ones.

I find different behaviour from Sherratt & Morand-Ferron
[33] with respect to the cost–benefit ratio. When I decrease
the mean benefits provided by known and novel prey to 1
(so that the cost–benefit ratio increases because animals must
pay the metabolic cost m), animals increase in willingness to
sample unfamiliar prey at nearly all ages (as measured by per-
sistence; electronic supplementary material, figure S3). This
contrasting result with Sherratt & Morand-Ferron [33] occurs
because in the present model, individuals face starvation
when potential rewards are low. It is preferrable to gamble
repeatedly on an unknown option than choose one that, on
average, leads to starvation. Despite some differences between
my results and those of Sherratt& Morand-Ferron [33], there
appears to be strong similarity between neophobic behaviour
and innovativeness, at least at the ultimate level of analysis
used in these models. This is because the appropriate decision
when encountering a novel object for the first time (neopho-
bia/neophilia) or when repeatedly attempting to attack a
novel prey (persistence) depends on current and expected
future payoffs.

Models that predict complex patterns as a consequence of
multiple interacting factors risk of fostering a sense of exper-
imental nihilism. However, I hope this study instead helps us
design more powerful experiments to test specific hypotheses
by accounting for precisely those factors predicted to generate
variability in innovativeness. Specifically, controlling for
the abundance of known and novel prey could increase the
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ability of experiments to detect linear relationships between
age, energy reserves and innovation.
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