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abstract: Predators must use the appearance of their prey to de- gorization behavior, but also for shaping selection on prey.

e-
predators have completed learning about prey appearance, yet we
do not understand how predators learn which aspects of appearance
to use for classifying prey. If sampling prey can be risky, predators
might forgo opportunities to learn about the relationship between
prey appearance and defense. Using Bayesian inference and dynamic
programming, we modeled how the immediate risks and future re-
wards of learning about prey appearance influence how predators
learn. In addition, we explored how variation in predator learning
affects the evolution of mimicry, which occurs when two prey evolve
to share a common signal to predators. We found that when learning
about prey with distinct appearances was expensive, optimal preda-
tors tended to lump them into the same category or exhibit an unwill-
ingness to sample at all (neophobia). This resulted in a reduction in
selection for defensive mimicry. However, the same predator behav-
ior favored the evolution of aggressive mimicry, because in that case,
mimics benefited from being sampled. When prey were very rare and
costs of sampling them were high, predators exhibited neophobia, re-
fusing to attack. This behavior could forestall the evolution of mim-
icry and instead select for polymorphism.

Keywords: animal communication, multicomponent signal, categori-
zation, exploration-exploitation, bandit problem, Bayesian inference.

Introduction

Those whomake many species are the “splitters,” and those
who make few are the “lumpers.” (Darwin, 1857)

Deciding whether organisms of different appearances should
be classified separately is a critical dilemma, not only for
taxonomists, as Darwin’s letter pithily points out, but also
for predators (Bradbury and Vehrencamp 2011). A pred-
ator faced with variants of unfamiliar prey must decide
whether to treat them all as the same or to learn about
each separately. How predators decide this is of consider-
able importance, not just for revealing insights about cate-
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fended prey (mimics) resemble defended prey (models) to
deceive predators (Bates 1862). If, for example, a mimetic
insect has a differently colored abdomen from its model,
selection for improvement in mimicry would depend on
whether predators lump model and mimic phenotypes to-
gether or split them apart. Indeed, there are many puzzling
instances of imperfect mimicry in nature where a Batesian
mimic shares only a few features in common with its model
(Kikuchi and Pfennig 2013), and several experiments have
shown that predators ignore potentially informative fea-
tures (Beatty et al. 2004; Bain et al. 2007; Kikuchi and Pfen-
nig 2010; Valkonen et al. 2011; Hossie and Sherratt 2013).
Predators might well consider prey that share more fea-
tures to be more likely to have similar defenses; neverthe-
less, if predators paid attention to those features not shared,
they would be able to successfully separate rewarding prey
from unrewarding prey when the prey types differ in prof-
itability. Here, we seek a formal treatment of when preda-
tors should invest in learning about specific features of their
prey. We assume the prey are already similar enough for
predators to consider treating them as the same—for exam-
ple, they may be varieties of snakes, beetles, or butterflies.
Conversely, we would not expect a predator to do anything
but treat prey with radically different appearances, such as
beetles and snakes, independently.
Most theoretical studies of how predators categorize prey

assume that learning is already complete (e.g., Oaten et al.
1975; Getty 1985; Sherratt 2002). Although these are highly
relevant for understanding many behaviors, we are inter-
ested in what goes on during the learning process, which
has long been argued to be important for the evolution of
mimicry (e.g., Müller 1879). Indeed, learning behavior has
been studied extensively in the context of foraging (e.g.,
Getty and Krebs 1985; Alatalo and Mappes 1996; Lindström
et al. 1997, 2004). Here, we examine the optimal way that
predators should categorize different prey as they learn about
them when they are free to choose which and how many
prey they sample and the implications that such categoriza-
tion behavior has for selection on prey appearance.
cide whether it is likely to be defended. Most theory assumes that Consider the evolution of Batesian mimicry, where und
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We model a predator that learns about the profitabil-
ity of two prey that can be perfectly discriminated on the

Model Description

322 The American Naturalist
basis of an obvious appearance cue (e.g., insects with black
or red abdomens) but must decide whether to treat these
distinct varieties as having different properties. We then
analyze how the optimal predator’s behavior will affect
the evolution of prey appearance, specifically focusing on
mimicry. Our model is very general, however, and can be
applied to many phenomena where agents may or may
not decide to invest in the necessary learning to finely
categorize objects’ properties, such as sexual selection, hab-
itat selection, or even internet advertising (Pandey et al.
2007).

Predators are not concerned with classification for the
sake of erudition but for survival, so they will seek the level
of categorization that maximizes their fitness. Learning
can be an expensive form of phenotypic plasticity (Snell-
Rood 2013), so predators must economize how many prey
they sample to gain information. They need to balance any
future rewards of learning about unfamiliar prey against the
likely immediate cost if a prey turns out to be defended.
This is an exploration-exploitation problem, where an agent
must sometimes choose between learning more and exploit-
ing the knowledge it already has (Jones 1978; Krebs et al.
1978; Cohen et al. 2007; Dayan and Daw 2008). The general
conundrum has also been presented as a multiarmed bandit
problem, in reference to hypothetical gamblers who must
choose between several slot machine arms, each with an un-
known probability of returning a reward (Robbins 1952;
Bellman 1956)—at eachmoment in time, gamblers are faced
with the option of finding out more about the slot machines
or exploiting their current knowledge to select what they be-
lieve to be the highest-paying arm.

Sherratt (2011) argued that predators encountering an
unfamiliar prey type are faced with a two-armed bandit
problem, with one arm’s probability of reward fixed at zero
(rejection of prey item) and the other arm (attack) having
an unknown benefit (depending on the probability that
prey are defended and how costly defended prey are). He
showed that predators should sample more of a prey as it
increases in abundance, because the future value of the in-
formation grows higher. Conversely, if the cost of sampling
a defended prey item is high and/or these prey are rare,
then predators should exhibit neophobia (reluctance to
sample unknown prey), because the possible benefit and
future value of information does not outweigh the likely
immediate sampling cost. Here we extend the model of
Sherratt (2011) to allow for prey with two different appear-
ance phenotypes. Such an approach allows novel questions
to be asked, such as under what conditions predators will
incorporate a new prey appearance dimension into their
categorization strategy and what implications this will have
for the evolution of mimicry.
This content downloaded from 134.117.249
All use subject to JSTOR
We assume that two types of prey (1 and 2) are encountered
with probabilities q and 12 q, respectively, in a random or-
der across a finite T time steps, which may be interpreted
very generally since the relevant scale for some predator-
prey relationships may range from a few encounters across
a lifespan to a single foraging bout in an unfamiliar habitat
patch. In nature, predators would also learn about q, but
this is a different problem from ours, because that informa-
tion can be gleaned passively rather than through poten-
tially costly, deliberate interactions with prey. The differ-
ence in the appearance of prey might be represented by
any categorical trait, such as color. The optimal predator
can use information gained by sampling prey to evaluate
whether it should treat each distinct prey type as a separate
bandit problem or lump them together as one.
For simplicity, we assume that payoffs comprise two

levels (profitable and unprofitable), so that the predator
gains a fixed benefit b for attacking a desired prey (e.g.,
undefended prey) and pays a cost c for attacking an unde-
sired one (e.g., defended prey). Predators must infer any
association between payoff and appearance (we are more
interested in predators that must learn the probability of
a prey being costly to attack than the magnitude of costs,
because classes of organisms often have similar costs—
think of most venomous snakes as deadly and most nox-
ious butterflies as unpalatable).
Prey of appearance i are costly to attack with true prob-

ability pi and beneficial to attack with true probability
12 pi. Predators are ignorant of the true value of pi and
must estimate it as pi. To perform their estimation, they
keep track of the number of costly trials (ri) out of their to-
tal number of trials (ni) in which they have sampled prey
of appearance i. Thus, (ri, ni) constitutes the data that the
predator has about the prey it has attacked. As new infor-
mation concerning the profitability of prey is accumulated,
Bayesian inference converts prior beliefs (beliefs held be-
fore sampling) into posterior beliefs (beliefs held after con-
ducting a learning trial; Courville et al. 2006; McNamara
et al. 2006; Kruschke 2010). Moreover, if the prior belief
distribution is chosen appropriately (i.e., a conjugate to the
parameter being estimated), then the posterior conveniently
follows the same distribution, albeit with different parame-
ter values (Bolker 2008). The conjugate prior for a probabil-
ity p with binomial outcomes (costly/beneficial) is the beta
distribution. If our prior is a beta distribution with shape
parameters a and b (i.e., Beta(a, b)), then after ri costly ex-
periences from ni trials, the posterior distribution will fol-
low Beta(a1 ri, b1 ni 2 ri). These priors a and b represent
the beliefs of the predators and could be gained through in-
heritance, observational learning, or other mechanisms. In
any beta distribution, the expectation is simply a=(a1b),
.254 on Wed, 9 Sep 2015 10:39:19 AM
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so that at any stage, the best estimate of the proportion of
prey with appearance i being costly is pi(ri, ni)p (ai 1 ri)= �LL(r1, r2, n1, n2)p
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(ai 1 bi 1 ni), where ai and bi are the original parameters
of the beta distribution for predators with no experience
at all with the prey. Note that as ni increases, the expectation
converges on ri=ni.

For a predator to accurately estimate the palatability of
one prey appearance, it does not need to sample as exten-
sively as it would to accurately estimate the palatability of
two. When a predator lumps prey together, their probabil-
ity of defense can be described by a single parameter p0(r1,
r2, n1, n2)p(a01r11r2)=(a01b01n11n2). On the other
hand, if it splits prey by appearance i, then a separate es-
timate pi(ri, ni) must be made for each. The latter model
may be advantageous if p1 ( p2, but it may also be expensive
to gather enough data for it to be accurate. Therefore, the
probability that each model is true will affect the predator’s
decision to attack or defer. On encountering prey, the pred-
ator will calculate these probabilities given its prior expec-
tations and the experience it has gained during previous
foraging. We introduce Bayesian model selection as a means
of calculating the probability of either a one-parameter or a
two-parameter model, that is, p1 p p2 versus p1 ( p2 (and
so, our optimal predator chooses between two alternative
models). We refer to the one- and two-parameter models
with subscripts L and S, respectively, for conceptually lump-
ing and splitting.

Bayesian model selection requires calculating each mod-
el’s marginal likelihood, which is inferred from the data
gathered while sampling, and each model’s prior probabil-
ity of being true. Initially, we assume equal prior probabil-
ities for the one- and two-parameter models (i.e., Pr(L)p
12 Pr(S)p .5), which amounts to an assumption about the
exact learning rule the predator uses. Whenever Pr(S) is not
set at 0 or 1, it is possible to consider both models, but if it
is 0 or 1, then there is only one possible model (split or
lump, respectively). The marginal likelihoods �Lj of each
model are found by integrating each model’s likelihood over
the priors for its parameter(s), that is, the Beta(a, b) priors
for pi. Below are the binomial likelihoods of each model in-
tegrated over its prior(s):

�LL(r1, r2, n1, n2)p
Yk

ip1

� ni

ri

� G(a0 1 b0)
G(a0)G(b0)

G
�Pk

ip1 ri 1a0

�
G
�
N2

Pk
ip1 ri 1bi

�
G(N1ai 1 b0)

,

(1)

�LS(r1, r2, n1, n2)p
Yk

ip1

� ni

ri

� G(ai 1 bi)
G(ai)G(bi)

G(ri 1a)G(ni 2 ri 1bi)
G(ni 1ai 1bi)

, (2)

where k is the total number of prey phenotypes and NpPk
ip1 ni. Under the assumption of uniform Beta(1, 1) priors

for all pi, these expressions can be simplified to
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(3)

and

�LS(n1, n2)p

"Yk

ip1

(ni 1 1)

#21

(4)

(cf. Ntzoufras 2009, pp. 399–400). In equation (4), ri con-
veniently drops out. The marginal likelihoods in equations
(3) and (4) represent the probabilities of the data given each
model, Pr(datajmodelp true). By applying Bayes’s rule to
the priors and marginal likelihoods, the posterior odds ra-
tio is

Pr(Lp true∣data)
Pr(Sp true∣data)

p
Pr(data∣Lp true)
Pr(data∣Sp true)

� Pr(L)
Pr(S)

. (5)

If we assume Pr(S)p .5, an even simpler expression can be
used to calculate the posterior probability ℘ of each model
j by dividing the marginal likelihood �Lj of each model by
the sum of the marginal likelihoods of allmmodels:

℘j(r1, r2, n1, n2)p
�Lj(: : :)Pm

ip1
�Li(: : :)

. (6)

At each time step, marginal likelihood of the one- and two-
parameter models is recalculated to update ℘j (fig. A1;
figs. A1–A3 available online).
Naturally, the predator’s decisions will be guided by not

only whether a one- or two-parameter model is most prob-
able, but also the immediate costs and benefits of attacking
or not and potential future benefits that it might reap from
the information gained through attacking. To model the
predator’s entire decision-making process, we use stochas-
tic dynamic programming (Mangel and Clark 1988; Clark
andMangel 2000). Dynamic programming explores all pos-
sible sequences of actions and outcomes to arrive at an op-
timal solution for behavior.
The predator’s dynamic programming equation (DPE)

is partitioned first between encountering prey of one ap-
pearance or another and then between attacking and defer-
ring. The payoffs for attacking and deferring are each esti-
mated according to one- and two-parameter models. The
payoff for deferring is always the same under both models,
because if a predator does not sample the prey it encoun-
ters, then it will simply advance to the next time step. We
express this as U(r1, r2, n1, n2, t1 1). Estimates of the pay-
off to attacking are, however, the averaged predictions of
the one- and two-parameter models, each weighted by their
posterior probabilities of being true. For example, on en-
countering prey type 1, the one-parameter model predicts
the following payoff to attacking: p0(r1, r2, n1, n2)(U(r1 1 1,
.254
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r2, n1 1 1, n2, t1 1)2 c)1 (12p0(r1, r2, n1, n2)) (U(r1, r2,
n1 1 1, n2, t1 1)1 b). The term p0(r1, r2, n1, n2) is the esti-

consider only one or the other, that is, Pr(S)p 0 or 1, re-
spectively. For our comparisons, we focus on three ecologi-

Behavior and Performance of Predator Strategies
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mate of the probability that they prey is defended. U(r1 1
1, r2, n1 1 1, n2, t1 1) is the future expected payoff if the
prey turns out to be defended, and c is the immediate
cost the predator will pay if the prey is defended. Corre-
spondingly, the estimated probability that the prey is ben-
eficial is (12p0(r1, r2, n1, n2)), and the future and imme-
diate benefits are (U(r1, r2, n1 1 1, n2, t1 1)1 b). This entire
expression is multiplied by the probability that the one-
parameter model is true,℘L(r1, r2, n1, n2), and summed with
the analogous prediction made by the two-parameter model
to produce a final estimate of the payoff for attacking. The
optimal predator does not distinguish between one-parameter
and two-parameter models any more than is worthwhile—
unless the future benefit to learning about prey of two ap-
pearances is greater than the cost of sampling, it will simply
lump them together. We present a graphical summary in fig-
ure 1, and the full DPE is given below:

U(r1, r2, n1, n2, t)p q �max
n
℘L(r1, r2, n1, n2)

� ½p0(r1, r2, n1, n2)(U(r1 1 1, r2, n1 1 1, n2, t1 1)2 c)

1 (12p0(r1, r2, n1, n2))(U(r1, r2, n1 1 1, n2, t1 1)1 b)�
1℘S(r1, r2, n1, n2)

� ½p1(r1, n1)(U(r1 1 1, r2, n1 1 1, n2, t1 1)2 c)

1 (12p1(r1, n1))(U(r1, r2, n1 1 1, n2, t1 1)1 b)�,
U(r1, r2, n1, n2, t1 1)

o
1 (12 q) �max

n
℘L(r1, r2, n1, n2)

� ½p0(r1, r2, n1, n2)(U(r1, r2 1 1, n1, n2 1 1, t1 1)2 c)

1 (12p0(r1, r2, n1, n2))(U(r1, r2, n1, n2 1 1, t1 1)1 b)�
1℘S(r1, r2, n1, n2)

� ½p2(r2, n2)(U(r1, r2 1 1, n1, n2 1 1, t1 1)2 c)

1 (12p2(r2, n2))(U(r1, r2, n1, n2 1 1, t1 1)1 b)�,
U(r1, r2, n1, n2, t1 1)

o
.

(7)

To solve the DPE, one must work backward from the maxi-
mum value for time, T, in a process called backward iter-
ation (Mangel and Clark 1988; Clark and Mangel 2000).

Model Application
In the exploration of our predator with prior Pr(S)p .5, we

refer to it as the mixer because it equally considers the one-
and two-parameter models. We compare it to two extremes
that we call the pure lumper and the pure splitter, which
This content downloaded from 134.117.249
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cal scenarios. The first includes one costly and one beneficial
prey, each with a different appearance. This can select for
Batesian mimicry (Bates 1862; Pfennig et al. 2001; Ruxton
et al. 2004) or aggressive mimicry (Dominey 1981; Haynes
et al. 2002; Cheney 2010; Stoddard 2012). The second sce-
nario is where both prey are costly. This could select for
Müllerian mimicry, in which two defended species evolve
to resemble one another so that predators sample fewer of
each (Müller 1879; Sherratt 2008). We also include a third
scenario where both prey are beneficial to further character-
ize predator behavior under ecological conditions that they
are likely to encounter concurrently with mimicry systems.
To represent our three scenarios, we assume that pi p (1,
0), (1, 1), or (0, 0). Below, we first characterize the behav-
iormixers, pure lumpers, and pure splitterswhen confronted
with each scenario and then subsequently explore how their
behavior affects selection for mimicry.

Model Analysis
For all analyses, we fix the values of the priors for pi (not to
be confused with the prior for the one- or two-parameter
models) at Beta(1, 1) so predators have uniform priors (i.e.,
expectation 0.5, all values between 0 and 1 equally likely).
This assumption greatly simplifies the calculation of the
marginal likelihoods (see eqq. [3], [4]) and allows us to re-
main agnostic about the true state of nature. We fix our
time horizon at Tp 40 because it allows for a reasonable
population size of prey with each appearance but is still
computationally tractable. All of our results are obtained
by forward iteration (i.e., Monte Carlo simulation; Clark
and Mangel 2000). If we assume qp 0.5, then in all of
our forward iterations, predators encounter an average of
20 prey of each appearance. Costs of interacting with unde-
sired prey can influence the evolution of mimicry (Duncan
and Sheppard 1963; Oaten et al. 1975; Sherratt 2002; Holen
and Johnstone 2004, 2006; Franks et al. 2009; Lehmann
et al. 2014), so we let the cost c vary between 0 and 5, which
covers the entire spectrum of possible cost-mediated varia-
tion in behavior (because with b fixed at 1 and Tp 40, the
mixer, pure lumper, and pure splitter refuse to sample for
c > 4.2; fig. 2).
Differences in the behavior of the mixer and its extreme

variants are driven by costs of sampling and perspectives on
available information. The pure lumper behaves as though
40 prey of one appearance are available, whereas the pure
splitter behaves as though there are on average 20 prey of
two different appearances. Therefore, the pure lumper is
more optimistic about the future benefits of learning and
.254 on Wed, 9 Sep 2015 10:39:19 AM
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ter (fig. 2). When a one-parameter model best represents how often each ecological scenario occurs. To find the best

Encounter prey of 

phenotype 1 with probability q
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the ecological scenario, for example, pi p (1, 1) or (0, 0),
the pure lumper outperforms the splitter by sampling fewer
prey before ceasing if both prey are costly (fig. 2A) and by
sampling at high values of c if both prey are beneficial
(fig. 2B); all values of pi are considered equally likely before
sampling (uniform priors), so even when both prey are ac-
tually beneficial, high potential costs may deter sampling.
However, when there is information contained about prof-
itability in prey appearance, for example, pi p (1, 0), the
pure splitter is able to take advantage of that information,
consistently attacking all beneficial prey and quickly re-
jecting the costly ones (fig. 2C, 2D). The pure lumper does
not distinguish between the two and thus fails to make
any profit for c > 1 (fig. A2). In all scenarios, the mixer typ-
ically samples an intermediate number of prey relative to the
pure lumper and pure splitter, which agrees with its constant
ability to consider the one- and two-parameter models.

The most important result from the above analysis is that
neither the pure lumper, the pure splitter, nor the mixer is
This content downloaded from 134.117.249
All use subject to JSTOR
prior under different conditions, we estimated their perfor-
mance when they have to learn about each of the three eco-
logical scenarios with different frequencies (fig. 3). From
this ternary plot, it is clear that over the whole region of cost
space, the pure lumper generally does best when the mix-
ture of scenarios encountered seldom contains one costly
and one beneficial prey, and the pure splitter does best
when the opposite is true. The mixer is superior when it
encounters a mixture of both. In general, we suspect that
if it were allowed to evolve, a predator’s prior for the one-
versus two-parameter models would come to reflect the fre-
quency with which it has to learn about each ecological sce-
nario during the course of its life (see table A1, available
online, for an analysis of conditions to which the mixer is
optimally adapted).
The pure lumper, pure splitter, and mixer can vary in

their relative performance depending on costs, so we re-
peated our analysis on smaller cost intervals (fig. 3B–3E).
This provides a nuanced perspective on how the costs of
is willing to sample at higher values of c than the pure split- always best. Which prior has the highest fitness depends on

Calculate payoff of attacking

under lumper model

Immediate payoff if costly
+ future value of information

Immediate payoff if beneficial
+ future value of information

Expected payoff for deferring

Calculate payoff of attacking

under splitter model

Immediate payoff if costly
+ future value of information

Immediate payoff if beneficial
+ future value of information

Sum and weight by 

probability of lumper model

Sum and weight by 

probability of splitter model

Expected payoff for attacking

Choose action with maximum expected payoff

Figure 1: Schematic of the dynamic programming equation (7) for the predator’s decision-making process. This diagram represents the pro-
cess when a prey of appearance 1 is encountered, which is symbolically represented in the first half of equation (7). The process is the same for
prey of appearance 2 but is not visualized here, for simplicity. The payoff from deferring (0) is the same whether the predator believes the two
prey appearances indicate the same or different properties.
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advantageous it is to discriminate between prey. When c is because there is less value to future information (fig. A3).

In analyzing selection for traits to be incorporated into a

20

costly/beneficial (costly)

A
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low, the pure splitter’s dominant performance shows that it
pays to learn more about prey appearance (because sam-
pling is cheap, and the more information, the better), but
such behavior can be a liability when costs are high, so
themixer and pure lumper predominate in such conditions.
To explore sensitivity of our results to the number of time
steps, we also performed an analysis with Tp 4 and c rang-
ing from 0 to 2. We found that, unsurprisingly, the pure
This content downloaded from 134.117.249
All use subject to JSTOR
Selection on Prey
signal, we must consider not only how predators behave
but also how their actions impact prey. This produces a
large number of potential relationships (Vanewright 1976;
Endler 1981), so we analyze three of the most familiar. One
sampling and the value of future information influence how lumper does much better when there are fewer time steps,
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Figure 2: A–D, Number of prey sampled by the mixer, pure lumper, and pure splitter under three different ecological scenarios, with cost
varying between 0 and 5. The behavior of the mixer is represented by the solid line, the pure lumper by the dashed line, and the pure splitter
by the dotted line. Results are from 1,000 iterations. When prey were both costly and both beneficial, results for both appearances were av-
eraged together.
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is Batesian mimicry, where mimics and models suffer a fit-
ness cost from being sampled by a predator.We also explore

case, the putative models—are always sampled completely
if they are sampled at all, but a diminishing proportion of

We have characterized how a predator should sample un-
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classical (defensive) Müllerian mimicry, where both prey
are defended and suffer a cost for being sampled. Finally,
because it is also possible for sampling by predators to be
beneficial, we included aggressive mimicry, in the sense that
one prey may in fact be a predator or sexual rival and so
benefits from being attacked by a predator.

In measuring fitness in Batesian mimicry and Müllerian
mimicry, we assume that prey that are sampled by preda-
tors are killed, but if they go unsampled, they survive to re-
produce. Under this assumption, the probability of surviv-
ing to reproduction is e2k, where k is the average number of
encounters with predators a prey must survive (Holen and
Svennungsen 2012). For aggressive mimicry, we assume
that each prey in the population needs to attract a predator
only once to satisfy its needs. The probability of not being
sampled is then 12 e2k. For simplicity, we assume kp 1,
which does not affect results qualitatively. Again, our results
are obtained by forward iteration, and priors for pi are fixed
at Beta(1, 1). We assume that a novel mutant in the popula-
tion makes negligible impact on q.

In Batesian mimicry, figure 4A shows that, unsurpris-
ingly, the fitness of mutant perfect mimics and imperfect
mimics is equal under predation by pure lumpers, since
pure lumpers disregard variation. The pure splitter exerts
selection as long as it continues to sample prey; however,
it ceases sampling at high c (neophobia is optimal), and
thus, the relative fitness of imperfect mimics becomes
equal to that of perfectmimics. Themixer attacks all mimics
while it favors the two-parameter model, but for a region of
cost space between 2.2 and 3.17, it favors the one- or two-
parameter models, depending on its first experience. Thus,
it exerts weaker selection that nonetheless continues sam-
pling at higher costs than the pure splitter does (fig. 4A).
Of course, defended prey must be somewhat costly for
there to be much benefit to mimicry in the first place, which
explains why mutant fitness under both the pure splitter
and the mixer rises rapidly as costs increase from zero.

Of fundamental importance is that at high costs, the
mixer exerts little selection for improvement in the mimetic
signal, because it increasingly follows the one-parameter
model. Therefore, we expect that selection for mimicry will
decrease with the cost of attacking defended prey. This is
contrary to what we would expect if predators already knew
the relationship between appearance and profitability, as in
many signal detection models of mimicry.

In the case of aggressive mimicry, the relationship be-
tween cost and selection is reversed. When prey benefit
from predator sampling, selection for the improvement of
mimicry should increase with the cost of predator errors
(fig. 4B), except in the case where predators are pure lump-
ers. This pattern emerges because beneficial prey—in this
This content downloaded from 134.117.249
All use subject to JSTOR
costly prey are sampled as costs increase.
Considering the evolution of Müllerian mimicry, we are

interested not only in how selection varies with differences
in costs but also in differences in the relative frequencies
of prey of different appearances. Theory predicts that, all
else being equal, the more abundant a prey appearance,
the more advantageous it will be to resemble. We analyze
relative fitness of mutants that resemble the nonfocal prey
appearance relative to a focal prey that serves as a fitness
reference. We assume all prey are defended and suffer from
sampling. We analyze variation in both c and q (probability
of a prey being type 1) to see under what conditions one
prey should converge on the other (fig. 5). At low costs,
when prey of each appearance are equally abundant, resem-
bling the nonfocal prey does not increase fitness much,
but at values that differ from parity, selection increasingly
favors convergence by the rarer prey. This pattern disap-
pears at higher costs. Neophobia is optimal at higher costs,
so rare prey benefit from a complete lack of sampling (note
values for selection less than 1, implying selection to remain
distinctive). The result is that at moderate levels of cost, se-
lection for convergence peaks at intermediate values of q,
but at higher levels of cost, weak divergent selection often
predominates, perhaps selecting for polymorphism as a re-
sult of neophobia.

Discussion
familiar prey of two different appearances. The cost that
predators pay for negative learning experiences is impor-
tant, although the abundance of prey can also have an ef-
fect. Variation in the relative performance of the pure
lumper, pure splitter, and mixer priors suggests that pred-
ators’ categorization behavior may evolve in response to
the suite of ecological scenarios they typically encounter.
We have also explored when predator learning behavior

will select for mimicry. Some outcomes are counterintui-
tive. For example, when predators encounter one beneficial
prey type and one costly one, an analysis that neglects the
costs of learning would predict the ready evolution of
Batesian mimicry. However, under our model, at high po-
tential costs, predators may not sample at all because neo-
phobia is optimal, and their avoidance of all prey in a
higher-level category (e.g., snakes or a coral snake and its
imperfect mimic) would produce no selection for mimicry
(or improvement in mimicry).
Our model may help explain why the behavior of pred-

ators toward mimics with complex signals—those that in-
volve multiple traits, components, modalities, or displays—
has hitherto been difficult to understand. Although many
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Figure 3: The prior (mixer, pure lumper, and pure splitter) with the highest fitness under conditions that vary in the proportion of time that
predators encounter scenarios where both prey are beneficial, both are costly, or one is beneficial and one is costly. Each corner of these ternary
plots represents a pure ecological scenario, but areas away from the corners represent mixtures of those scenarios. Areas where one prior
outperforms the others are shaded. A, Over the whole range of costs considered, the mixer, pure lumper, and pure splitter each dominate
for about one-third of possible conditions. The pure lumper does best when prey tend to provide the same payoff, and the pure splitter does
best when prey tend to be different, but themixer excels in themiddle. B–D,When cost space is subdivided, the three priors showmuch variation
in their degree of superiority over one another. At low costs, the pure splitter does relatively well because it is penalized less for sampling. How-
ever, as costs of sampling rise, the mixer dominates under a wide range of conditions because it can choose to treat prey of both appearances as
the same. E, Above cp 3.61, only the pure lumper continues to sample and thus dramatically outpaces the pure splitter and mixer when it is
possible tomake a profit at all. However, the pure splitter and themixer both outperform it when sampling is unprofitable (they have equal payoffs
in the white region on the bottom of the triangle). The figure was produced by calculating predator performance (i.e., sum of costs1 benefits
earned over a learning session with 40 prey) in each of the three scenarios over each interval of c (we evaluated c at increments of 0.01 and averaged
results within each interval) and then weighing those three performance measures by the frequency of encountering each scenario at each point in
the ternary plot.
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prey have evolved to mimic complex aposematic (warning)
signals, predators often ignore some apparent components 1

.4 A
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(e.g., Kikuchi and Pfennig 2010; Kazemi et al. 2014) or dif-
ferent combinations of components (e.g., Valkonen et al.
2011; Hossie and Sherratt 2013). Our theory suggests that
predators may not always be willing to pay the sampling
costs of learning exhaustively about differences between
models and mimics. Each aspect of appearance that pred-
ators learn about will require further sampling to associate
with a payoff, and the relative gain of learning about new
traits will only diminish with the number of informative
traits the predator has already learned about. Indeed, we
think it will be prohibitively costly for predators to learn
about all aspects that separate models and mimics, espe-
cially the numerous interactions between traits. Therefore,
some degree of imperfection in mimicry is probable in all
systems, although some mimics may be less imperfect than
others.

Differing degrees of signal complexity have been docu-
mented in mimicry systems from various higher-level cat-
egories of prey. These differences may be linked to the
stronger defenses of, for example, coral snakes compared
to butterflies. The deadly New World coral snakes (Micru-
roides, Leptomicrurus spp., and Micrurus spp.) have sim-
ple patterns of colored rings on their bodies that adver-
tise their deadly venom. They are mimicked by a host of
nonvenomous snakes, but even imprecise mimics receive
protection (Brodie 1993; Hinman et al. 1997; Harper and
Pfennig 2007). In some regions, the aposematic signal that
predators respond to may merely be the ratio of red∶black
(Kikuchi and Pfennig 2010). At the other extreme of signal
complexity, unpalatable butterflies in the genus Heliconius
have very complex color patterns that they employ in Mül-
lerian mimicry. Many dimensions of their color patterns
are under stringent selection by wild predators (Kapan
2001; Merrill et al. 2012; Finkbeiner et al. 2014). In light
of the model that we have proposed here, predators may
be much less willing to gather information about a poten-
tially lethal snake than they are to gather information about
a potentially distasteful butterfly. In fact, some predators
have evolved innate aversions to prey that resemble coral
snakes (Smith 1975, 1977). In general, our theory predicts
that with increasing costs of interacting with undesired
prey, the number of signal dimensions used in mimicry
should decrease.

An unusual prediction of our model is that the fitness of
prey with high potential costs of sampling should be highest
when they are rare; the combination of prior expectation
of defense and high costs results in neophobia. This predic-
tion is borne out when novel undefended prey appear to
benefit from neophobia (fig. 2D; Pfennig et al. 2007; Franks
and Oxford 2009) and occurs because sampling rare prey
provides low future benefits (see also Sherratt 2011). For
This content downloaded from 134.117.249
All use subject to JSTOR
the observation of uniformity in aposematic signals across
some species’ ranges (e.g., Harper and Pfennig 2007). The
benefits of being rare according to our model may be miti-
gated if natural predators have uncertainty about the costs
of sampling prey or their abundance. This could increase
sampling, which would select for aposematism and Mülle-
rian mimicry in defended species and perhaps crypsis rather
than gaudy polymorphism in undefended species. In any
case, more information about the incidence of polymor-
phism versus Müllerian mimicry in natural systems where
there is geographic variation in abundance would be most
welcome.
Models of mimicry based on signal detection theory (e.g.,

Duncan and Sheppard 1963; Oaten et al. 1975; Sherratt
defended prey, however, this is contrary to the conventional
wisdom that warning signals provide safety in numbers and
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Figure 4: A, Relative fitness of undefended prey that mutate to re-
semble defended prey, assuming that prey suffer a fitness cost from
being sampled by predators (e.g., Batesian mimicry). B, Fitness of
aggressive mimics that mutate to resemble their models, assuming
mimics benefit from being sampled by predators or other signal re-
ceivers (e.g., aggressive mimicry). Selection for resembling the alter-
native appearance is quite strong in both cases. Relative fitness for
the mutant prey when the predator is a mixer is represented by the
solid line; when it is a pure lumper, by the dashed line; and when it
is a pure splitter, by the dotted line. Results are from 1,000 iterations;
qp 0.5.
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which is analogous to our prediction that an appearance
trait should be less likely to be used with increasing costs.
However, there is a distinction between these two patterns.
Signal detection models describe the precision of mimicry
within a dimension of appearance (or set of dimensions).
Our analysis, on the other hand, assumes that predators
can distinguish perfectly between prey of different appear-
ances but must pay a cost of sampling to associate ap-
pearance with payoff. Thus, in contrast to signal detection
theory, this approach addresses whether an aspect of ap-
pearance should be used at all.

In sum, we have found the optimal sampling model for a
predator learning about prey with two different appearance
phenotypes. Our analysis suggests that the selection im-
posed on prey by predators depends on the costs of learn-
ing. When prey suffer from predator sampling, higher costs
should be less likely to select for mimicry, but when prey
benefit from being sampled by predators, higher costs should
increase selection for mimicry. Future studies should explic-
itly address the influence of costs of sampling on the number
of appearance traits that predators use in categorizing prey.
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