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Signal detection theory (SDT) has been invoked to help explain why imperfect mimics of particularly unprofitable or abundant models 
might experience no further selection to improve their mimicry. However, most tests of SDT have focused on single dimensions of 
mimetic phenotypes, or used multivariate techniques to compress many dimensions of phenotype into a single scale. Here, we explic-
itly tested SDT in both one and two dimensions by asking human subjects to discriminate computer-generated mimics and models 
that varied continuously in both size and/or color. We arrived at two major conclusions. First, although subjects can use prey size or 
color to help discriminate profitable and unprofitable prey that vary in only one dimension, responses of subjects to prey that vary in 
two dimensions are poorly represented by multidimensional SDT. Second, because different individuals within groups may use differ-
ent strategies, the behavior of groups is often better fit by more complex models. In general, humans give more weight to color when 
making discriminations than is optimal. This bias may indicate that they believe that color has higher relative validity than size. More 
studies on the behavior of natural predators when foraging on multidimensional prey are urgently needed.
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INTRODUCTION
In Batesian mimicry, an undefended species (the mimic) evolves 
a resemblance to a defended one (the model), gaining protection 
from predators (Bates 1862; Ruxton et al. 2004). Batesian mimicry 
is a quintessential example of  the power of  natural selection to pro-
duce adaptation, but the extent of  this mimicry is often imperfect 
(Kikuchi and Pfennig 2013). Indeed, there are numerous instances 
in which mimics possess some degree of  similarity to their mod-
els but nonetheless can readily be distinguished (e.g., Dittrich et al. 
1993; Kikuchi and Pfennig 2010a; Iserbyt et al. 2011). The mainte-
nance of  imperfect mimicry poses a fundamental problem because 
it challenges our intuition about the adaptive process—namely, that 
natural selection should continually refine an adaptation.

Many hypotheses have been proposed to explain imperfect 
mimicry, and among the most successful has been the relaxed 
selection hypothesis (Bates 1862; Duncan and Sheppard 1965; 
Sherratt 2002; Lynn 2005; Penney et  al. 2012). Modern versions 
of  the relaxed selection hypothesis of  imperfect mimicry are typi-
cally framed in terms of  signal detection theory (SDT; Swets et al. 
1961; Wiley 1994; Lynn and Barrett 2014), in which receivers seek 
to discriminate between profitable and unprofitable stimuli using 
acceptance/rejection criteria that maximize their net payoff (Oaten 
et al. 1975; Getty 1985; Johnstone 2002; Sherratt 2002; Holen and 

Johnstone 2004). The SDT approach is utilitarian in that it incor-
porates not just the likelihood that a perceived stimulus is a profit-
able mimic (“target”) or unprofitable model (“distractor”), but also 
the benefits of  correct decisions (hits and correct rejections), along 
with the costs of  false positives (false alarms) and false negatives 
(misses)—see Figure 1.When the unprofitable model is particularly 
costly to attack compared with the benefits of  attacking a mimic 
(Goodale and Sneddon 1977; Penney et  al. 2012), or particularly 
common in relation to the mimic (Lindström et al. 1997; Harper 
and Pfennig 2007; Kikuchi and Pfennig 2010b; Iserbyt et al. 2011), 
then there may be no further selection to improve the extent of  
mimicry once mimics achieve an approximate resemblance to their 
models, because even a vague resemblance to the models is suffi-
cient to protect mimics from attack.

Multidimensional signals are ubiquitous in communication 
(Rowe 1999; Hebets and Papaj 2005), including mimicry, yet SDT 
models have tended to represent the perceived stimuli of  targets 
and distractors on a 1-dimensional scale, generally thought of  as 
“sensory magnitude.” Indeed, even stimuli well known to vary 
along multiple dimensions are frequently collapsed onto a single 
appearance dimension. For example, mammogram features such as 
shape, size, and darkness can effectively be collapsed into a single 
appearance dimension using multivariate techniques (Dorsi and 
Swets 1995). Likewise, multivariate techniques have been employed 
to assess the similarity between mimics and models based on a 
range of  phenotypic properties (e.g., Iserbyt et  al. 2011; Penney 
et al. 2012).Address correspondence to D.W. Kikuchi. E-mail: dwkikuchi@gmail.com
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Extending SDT to multiple dimensions is a natural alternative 
to reducing the phenotypic dimension of  appearance to a single 
sensory magnitude. Indeed, when multidimensional traits (such as 
color and size) are uncorrelated across phenotypes and perceived in 
an uncorrelated way (such that red objects do not appear any big-
ger or smaller than blue objects, say), then SDT can divide the per-
ceptual plane into response regions of  accept (attack) or reject just 
as it does in the 1-dimensional case (Ashby and Townsend 1986; 
Ashby and Soto 2015). When the perceived or actual target and 
distractor traits are uncorrelated and normal in their distributions, 
the threshold is a straight line (Figure 2).

Although there has been a great deal of  work on 1-dimen-
sional SDT and some experimental evaluations (e.g., Duncan and 
Sheppard 1963; McGuire et  al. 2006; Leonard et al. 2011), there 
has been very little work in ecology to evaluate the success of  SDT 
applied directly to multidimensional problems. Indeed, despite the 
prevalence of  phenotypic variation in multiple dimensions includ-
ing size, color, and pattern, it is quite possible that classical SDT fails 
in multiple dimensions. For example, the framework may assume 
too much from the decision maker’s cognitive abilities in expecting 
them to weight different phenotypic dimensions to different extents. 
Only through experimental evaluation of  these theoretical models 
will we fully understand the general limitations of  multidimensional 
SDT and in turn how predators might be expected to respond to 
mimicry in multiple dimensions.

Here, we conducted an experiment with human subjects as sur-
rogate predators who were asked to discriminate between models 

and mimics that varied in either one or two independent dimen-
sions (size and/or color). Subjects played a computer game where 
they received points for correctly attacking mimics and lost points 
for attacking models. We had two overarching goals: 1)  to deter-
mine if  individual subjects behaved according to the expectations 
of  multidimensional SDT, and 2) elucidate the nature of  selection 
for mimicry by analyzing the overall attack rates on mimetic popu-
lations. SDT assumes that subjects perceive and weight all dimen-
sions appropriately in making decisions. To test this fundamental 
assumption, we varied the degree to which each dimension could 
be used to make a correct choice. To address our second goal, we 
measured the attack rates experienced by a population of  mimics 
when they were exposed to predation by groups of  subjects. To 
evaluate the robustness of  our findings, we also measured the effect 
of  varying the cost:benefit ratio of  attacking models versus mimics 
on the overall attack rates on mimics.

METHODS
Experimentation

Our computer program generated digital prey (models and their 
mimics) and displayed them for human subjects to attack. Attacking 
a model penalized the subject in numerical points, while attacking 
a mimic gave him or her a reward (cf., McGuire et al. 2006). Prey 
items were squares that could vary in two dimensions: size (number 
of  tiles [“pixels”] along each of  the sides, with 24 pixels appear-
ing as 1.3 cm on the screen) and the proportion of  blue pixels 
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Figure 1
All signal detection problems are based on a set of  probability distributions of  perceived stimuli, generated by targets and distractors. These probability 
distributions can take any form but the most commonly assumed distribution is the Gaussian (normal), parameterized by the mean (μ), and SD (σ). When the 
distributions of  perceived stimuli from a single target and single distractor are each unimodal (e.g., normally distributed), then there is an optimal threshold 
(also called a decision boundary) at which the receiver should switch from responding as if  the stimulus was generated by a target, to as if  it were generated 
by a distractor. This process is like choosing a significance threshold in statistics, except that instead of  using an arbitrary number like 0.05, the decision 
boundary is calculated to maximize the net payoff to the decision maker. In this hypothetical scenario, targets (mimics) are represented by the solid line 
and distractors (models) are represented by the dashed line. The fills indicate correct attacks on mimics (black thin lines), incorrect attacks on models (black 
dashes), correct rejections of  models (gray dashes), and incorrect rejections of  mimics (gray thin lines). Cost = 3, benefit = 1, and number of  mimics is equal 
to the number of  models.
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(others were yellow). In the color dimension, prey were bilaterally 
symmetrical with a 50% probability of  having a vertical versus 
horizontal axis of  symmetry. In each dimension, the phenotypes 
of  individual models and mimics were drawn from normal distri-
butions with different means but equal variances (a common sim-
plifying assumption in SDT). At the start of  each trial, subjects 

were simultaneously shown 28 randomly selected exemplars of  
costly models and 28 beneficial mimics that they could study for 
as long as they wanted until proceeding (Figure 3). They were also 
informed of  the relative costs and benefits of  attacking models and 
mimics, and instructed to maximize their scores. Subjects were then 
given 5 min to forage on the digital prey, which were presented one 
at a time in a random order. Each prey was produced by a ran-
dom draw from the specified size and color normal distributions. 
For each prey that was presented, subjects could choose to attack 
it or skip it. There was no time limit imposed in making any indi-
vidual decision to attack or reject, but we recorded the time (in mil-
liseconds) to attack each prey item and the time until a new screen 
(with new prey) was requested. After attacking a prey item, subjects’ 
running point total was updated (which reinforced the cost:benefit 
of  attacking prey). To enhance the motivation of  our subjects and 
provide instant feedback on the profitability of  prey items they had 
just attacked, attacks on models were accompanied by an unpleas-
ant electric shock sound, whereas attacks on mimics were accom-
panied by a pleasant cash-register sound. Subjects’ total score was 
constantly displayed in the corner of  the computer monitor. Each 
subject participated in only one trial.

We had 9 treatment conditions under which subjects were tested 
(see Table 1 and Supplementary Figure 1). In the first 4, only one 
dimension (color or size) was informative, and the other dimension 
did not vary. In treatments 5–9, both color and size were informa-
tive (albeit to different extents), that is, subjects’ performance on 
2-dimensional SDT tasks was tested. Our treatments are summa-
rized in Table  1. For treatments 1–7, three levels of  cost:benefit 
ratio were tested, but for treatments 8 and 9, only one cost:benefit 
ratio was tested. We refer to the collections of  subjects randomly 
assigned to each treatment at each level of  cost:benefit as “groups” 
(which we use for statistical purposes, rather than to imply group 
foraging). There were seven subjects for each group, including three 
groups each under treatments 1–7, and one group each under treat-
ments 8 and 9 (23 groups and 161 subjects in total). Subjects came 
from the population of  Carleton University’s campus, where we 
asked individuals to participate using a portable computer terminal.

One-dimensional SDT

It is possible that humans are simply less able to use one dimen-
sion than another to make discriminations, so we conducted trials 
in which mimics and models differed on average in a single appear-
ance dimension. Both prey phenotypes resembled each other 
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Figure 2
When there are two multivariate normal distributions, with each phenotypic 
dimension perceived independently (i.e., the two perceptual distributions have 
equal variance-covariance matrices), the decision boundary for optimally 
separating targets and distractors is a straight line through phenotypic space. 
On one side of  the decision boundary (thick black line), all targets should 
be attacked (gray area), and on the other, all should be avoided (white area). 
Comparing slope and intercept of  the optimal decision boundary relative 
to actual predators’ responses is one way to assess how well SDT predicts 
behavior. For the hypothetical scenario depicted here, the densities of  
targets (mimics) are represented by the dashed contours and the densities of  
distractors (models) are represented by the solid contours. If  a predator used 
dimension 1 more than was optimal, its decision threshold would be more 
vertical than the optimal one. Here, cost = 2, benefit = 1, and number of  
mimics is equal to the number of  models. If  relative abundances or costs 
were to change, we would expect a change in the intercept of  the decision 
boundary rather than the slope, so in this case it would remain perpendicular 
to the line between the model and mimic mean phenotypes.

Table 1
Parameters of  experimental treatments used in this study. Treatments 1–4 are for 1-dimensional discrimination tasks

Treatment Model % blue Mimic % blue σ color Model size Mimic size σ size Description

1 70 40 0.15 24 24 0 Color only (easy to distinguish)
2 60 50 0.15 24 24 0 Color only (hard to distinguish)
3 50 50 0 31.2 24 4 Size only (hard to distinguish)
4 50 50 0 36 24 4 Size only (easy to distinguish)
5 70 40 0.15 31.2 24 4 Color and size moderate
6 60 50 0.15 36 24 4 Color hard; size easy
7a 40 70 0.15 24 31.2 4 Color and size flipped from 5
8a,b 40 70 0.15 31.2 24 4 Color flipped from 5
9a,b 70 40 0.15 24 31.2 4 Size flipped from 5

Treatments 5 and 6 are 2-dimensional. Treatments 7–9 are manipulations of  treatment 5 designed to test the independence of  perception of  each dimension. 
Note that σ refers to the standard deviation (SD) for each dimension of  phenotype. The size refers to the number of  colored tiles (pixels) used to depict a prey 
item (linear dimension), with prey of  (mean) sizes 24, 31.2, and 36 presented as sizes 1.3, 1.7, and 1.95 cm on the screen.
a“flipped” treatments
bonly tested for relative cost = 1
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exactly in the other dimension (see Table 1 treatments 1–4). For all 
four 1-dimensional treatments, we evaluated decisions under three 
different levels of  cost.

Two-dimensional SDT

To address our first goal of  evaluating how closely individual sub-
jects’ behavior could be modeled by SDT, we measured subjects’ 
responses to model and mimic phenotypes over a range of  costs 
and benefits when two dimensions could (and, in theory, should) 
be used to make the discrimination. First, we selected prey pheno-
types from populations of  models and mimics so that the relative 
information contained in size and coloration dimensions would be 
approximately equal (treatment 5). We also wanted to see how sub-
jects behaved when there was more information in one dimension 
than another, so we conducted another treatment that was identical 
to treatment 5, except that size was more informative than color 
(treatment 6). Thus, in treatment 6, there was less difference in the 
mean color of  model and mimic populations than in treatment 5, 
and more difference between their mean sizes, with variances held 
the same.

“Flipped” treatments

We needed to rule out the possibility that a correlation in the per-
ception of  color and size affected subjects’ behavior when prey 
varied in two dimensions, for example, yellower prey might appear 
larger to subjects although, objectively, color and size vary indepen-
dently (Ashby and Townsend 1986). To do this, we conducted a 
series of  treatments where the mean colors and/or sizes of  models 
and mimics were reversed with respect to treatment 5. Thus, if  yel-
lower prey did indeed appear larger to subjects, then we should be 
able to detect a difference in their behavior based on the thresholds 
adopted in the “flipped” treatments. There were three varieties of  
flipped treatments: one where color and size were reversed (treat-
ment 7), one where only color was reversed (treatment 8), and one 
where only size was reversed (treatment 9).

Analysis

All models were fitted in R 3.1.3 (R Core Development Team 
2015). First, we tested our assumption that presenting subjects with 
the distributions of  models and mimics indeed educated them com-
pletely, that is, that they did not learn during trials. We did this by 
fitting a generalized linear mixed model to all of  our data with the 
number of  errors from a given number of  attacks as the binomial 
response variable. We included group (each of  the nine treatments 
from Table 1 divided into different levels of  cost:benefit ratio) and 
the number of  prey encountered as predictors, with individual par-
ticipants allowed to have random slopes and intercepts. To test for 
a significant difference in error rate between groups, we compared 
this model to one that did not include group by using a likelihood 
ratio test. Based on our results (see Supplementary Figure  2), we 
discarded data from the first 20 prey items encountered for all sub-
sequent analyses, as it appeared that some learning did occur early 
on as subjects encountered prey items and received feedback.

One-dimensional SDT

To evaluate whether size and color can each be used separately to 
categorize prey, we tested whether subjects’ probability of  attack 
was related to color or size when only one varied (i.e., in our 
1-dimensional treatments 1–4), whether the difference between the 
mean phenotypes of  models and mimics affected attack thresholds 

in a manner predicted by SDT, and whether or not costs of  errors 
influenced subjects’ behavior. Therefore, we fitted two general-
ized linear mixed models of  attacks and rejections with the follow-
ing predictors: color or size (continuous), the distance between the 
means of  the model and mimic distributions (continuous), the rela-
tive cost of  attacking models, and their interactions. The first model 
included subjects from treatments 1 and 2 (color informative), and 
the second included subjects from treatments 3 and 4 (size infor-
mative). In both models, subjects were allowed to have their own 
slopes and intercepts as random effects. Nonsignificant interaction 
terms were removed in a stepwise procedure.

Two-dimensional SDT

We wanted to know if  subjects behaved in a manner consistent with 
SDT while discriminating in two dimensions, so we modeled each 
subject’s probability of  attacking a prey item as a function of  the 
prey item’s color and size. We considered five potential models for 
each subject: one in which subjects behave randomly, one with only 
prey size, one with only color, one with color and size, and another 
with color, size, and their interaction. All were generalized linear 
models with a logit link function, that is, binary logistic regres-
sions. On fitting this type of  model the subjects’ decision bound-
aries can then be estimated (and plotted) as the 50% chance of  
attacking isocline (Figure 2). When subjects’ behavior is best fit by a 
1-parameter model that uses only size or only color, then the deci-
sion boundary is a horizontal or vertical line depending on what 
dimension is used for discrimination (Figure 2). When subjects use 
both color and size to a significant degree but not their interaction, 
their behavior is fit by a straight line that is neither horizontal nor 
vertical (Figure 2). The model that includes an interaction between 
color and size would have a curved decision boundary. Under SDT, 
a 2-parameter linear model describes the predicted optimal deci-
sion boundary under our experimental conditions (2-independent 
phenotypic dimensions). So, if  individuals use both color and size 
to make decisions, then the model that best describes their behavior 
should be one that includes color and size but not their interac-
tion. Note, however, that it is entirely possible for subjects to use 
linear decision boundaries that differ from the optimal slopes and/
or optimal intercept. We used Akaike’s Information Criterion (AIC) 
to select the best model for each human subject.

Often, individuals used only size or color as a predictor (see 
Results). We wanted to know if  their use of  either color or size 
depended on which experimental treatment was applied (i.e., color 
was approximately as informative as size, or size was more informa-
tive; treatment 6 vs. treatments 5, 7, 8, 9). To test the hypothesis 
that individuals randomly chose a single dimension to make deci-
sions against the alternative that they preferred to use color unless 
size was much more informative, we used a Pearson chi-squared 
test. We applied this test to a table of  treatment (6 vs. 5, 7, 8, 
9) against subjects’ use of  color or size. Because expected counts of  
some cells were less than 5, the test statistic calculated by simulation 
using 99 999 replicates. We also used a generalized linear model 
with Poisson distribution (log link) to test whether the number of  
parameters in an individual’s optimal model is related to treatment 
(i.e., how informative size was relative to color).

Pooling the behavior of  individual subjects, we were curious 
to know how the behavior of  a group of  subjects affected attack 
rates on mimics, and hence selection for mimicry. For each group, 
we modeled the probability of  attacking a prey item as a func-
tion of  random decision-making (intercept only), prey color, prey 
size, color and size, or a maximal model that included color by 
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size interaction, again using a generalized linear model with logit 
link function. Again, we used AIC to select the best model for 
each group.

We calculated the optimal decision boundary for each group 
under the 2-parameter model and tested whether the null hypoth-
esis that the slopes and intercepts of  group human decision bound-
aries in each treatment were different from the optimal ones. 
Although not all groups were best fit by the 2-parameter model, 
it was usually a candidate model (within 2 ΔAIC units of  the best 
model; see Results), and it is convenient because it gives a deci-
sion boundary for the group that is linear in form, which can eas-
ily be compared with the analytical predictions of  SDT. We asked 
whether the optimal slopes and intercepts fell within 95% of  the 
bootstrapped slopes and intercepts. Rejection of  either null hypoth-
esis would indicate that attacks on mimics differed significantly 
from the predictions of SDT.

We examined the effects of  costs of  sampling and the relative 
information contained in each signal dimension. For this compari-
son, we analyzed only data from treatments 5 and 6.  We fitted a 
generalized linear mixed model of  the probability of  attack on 
mimics with relative cost, color, size, treatment, and their interac-
tions as additional predictors. Individuals were allowed to have 
their own slopes and intercepts with respect to color and size.

“Flipped” treatments

Finally, we needed to confirm that the perception and use of  color 
and size in decision-making did not depend on particular values 
of  color and size. Such an effect should be detectable by a shift 
in the decision-boundary for treatments where color and/or size 
were “flipped” for models and mimics. To test for this possibility, 
we fitted generalized linear models of  the probability of  attack-
ing mimics with color and size of  each mimic as predictors. We 
did this for each type of  treatment: “regular,” both color and size 
flipped, color flipped, and size flipped (treatments 5, 7, 8, and 9). 
We compared 95% confidence intervals (CIs) for the magnitudes 
of  the slopes for the decision boundaries, which we calculated by 
bootstrapping. Our bootstrapping procedure created 1000 pseudo-
replicates for each treatment dataset, with structure to account for 
individual subjects included. If  flipped treatments did not alter sub-
jects’ behavior, then there should be no significant difference in the 
magnitude of  their slopes.

RESULTS
Subjects encountered a mean of  163 ± 58 prey during the 5 min 
trials. A  major assumption of  SDT is that signal receivers (i.e., 
our human predators) already know the distributions of  signal 
and noise (i.e., mimics and models) and act accordingly. We exam-
ined our data to detect a decrease in error rate with the number 
of  prey subjects had encountered (Supplementary Figure  2). We 
also fit a logistic regression of  subjects’ error rate in classifying 
prey as a function of  the number of  prey they had encountered. 
Experimental groups differed in error rate committed (likelihood 
ratio test; χ2  =  94.234, df  =  22, P  <  0.001). This is expected 
because treatments vary in the overlap between model and mimic 
distributions, which determines discriminability. Although there 
was a slope to the regression line significantly different from zero 
(meaning that some learning occurred as humans encountered 
prey; Wald z test; z = −2.156, P = 0.031), its effect was slight, and 
little learning appeared to occur after the first 20 prey items that 
subjects encountered.

One-dimensional SDT

In our 1-dimensional trials, we found that humans in general used 
the appropriate dimension (color or size) to categorize prey (Wald z 
tests: color: z = 3.51; P < 0.001; size: z = −7.82; P < 0.001). With 
color, there was a significant interaction of  the difference between 
means and color of  individual prey (z  =  −9.14; P  <  0.001), and 
the difference between means alone (z = 7.54; P < 0.001), but no 
effect of  relative cost (see Table 2 and Supplementary Figure 3) on 
the attack rate of  a given prey phenotype. In the case of  size, both 
the difference between the means of  the distributions (z  =  3.59; 
P < 0.001) and the relative cost of  committing errors (z = −2.086; 
p = 0.03) were significant predictors of  the probability of  attack a 
given phenotype (see Table 2 and Supplementary Figure 4).

Two-dimensional SDT

In two dimensions, individual subjects’ behavior showed variation 
from the group mean for each treatment. Subjects were typically 
more variable in their behavior when size was more informative 
than color, that is, in treatment 6 rather than treatment 5 (Figure 4).

The crux of  our assessment of  how well human predators fol-
lowed the predictions of  multidimensional SDT was determining 
which model of  attack probability best described their behavior. We 
found that the attacks made by individual subjects were usually best 
explained by single parameter models that contained either prey 
color or size (Figure  5). These subjects generally preferred to use 
color instead of  size, except when size was much more informative 
(i.e., in treatment 6; exact chi-squared test, P = 0.002). However, we 
could not reject the null hypothesis that a few subjects guessed ran-
domly, using no decision rule, while it appears that others used both 
size and color, or sometimes an interaction between the two (which 
implied they hypothesized a more complicated pattern than actually 
existed). In Figure 5, we also display the number of  parameters in 
all models within 2 or 5 ΔAIC units of  the best model. Often there 
was not a clear-cut best model for an individual, as can be seen 
from the initial rapid increase in the number of  candidate models 
as higher ΔAIC values are included. The number of  parameters 
in the models that best fit individual subjects’ behavior was not sig-
nificantly related to which treatment they experienced (Wald z-test; 
z  =  −1.43; P  =  0.15), so more complicated discrimination rules 

Table 2
Model formulas, coefficients, and standard errors, test statistics 
(Wald z), and significance values from 1-dimensional signal 
detection experiments

Estimate Standard error z-value P-value

Model: P (attack on mimic) ~ prop. blue • DBM
Intercept −2.54 1.27 −2.00 0.05
Prop. blue 8.09 2.31 3.51 <0.001
DBM 45.18 5.99 7.54 <0.001
Prop. Blue • DBM −102 11.20 −9.14 <0.001
Model: P (attack on mimic) ~ relative cost + size + DBM
Intercept 3.42 2.34 1.46 0.14
Relative cost −0.26 0.13 −2.06 0.04
Size −0.36 0.05 −7.82 <0.001
DBM 5.22 1.46 3.59 <0.001

DBM refers to difference between mean proportion blue of  mimics and 
models, whereas prop blue refers to the proportion blue of  any given prey 
type encountered. Individual subjects were treated as random effects in these 
binomial linear mixed models.
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were not necessarily favored depending on whether or not size was 
more informative than color.

In contrast to individual subjects, attacks on a population of  
mimics by groups were usually best explained by more complex 
models (Figure  5). The best models most often included interac-
tions, but it was often difficult to separate many of  these from sim-
pler, 2-parameter additive models (Figure 5d).

Although the behavior of  a group of  humans was sometimes 
best explained by a 2-parameter model that can contain the opti-
mal decision boundary that is neither horizontal nor vertical, it 
does not in itself  demonstrate optimal behavior because they could 
use both dimensions inappropriately. To better understand the rela-
tionship between attacks on mimics and the behavior of  groups of  
subjects, we used bootstrapping to calculate CIs around slopes and 
intercepts of  their decision boundaries. We found that only groups 
in treatments where size was much more informative than color 
had decision boundaries that contained either the slope or intercept 
of  the appropriate optimal boundary, and even then only under 
some cost/benefit ratios (Table 3). The behavior of  groups is most 
often explained by more complex models than the behavior of  
individuals (whose behavior is often best described by 1-parameter 
models—some of  which use color and some of  which use size), yet 
groups still usually deviate from the predictions of SDT.

Our model for predicting overall attack rates in two dimensions 
included size, color, treatment, and an interaction between color 
and treatment (Table 4). Most of  the change in the decision bound-
ary between treatments appeared to be mediated by a shift in the 
importance of  prey color. In concordance with our other methods 
of  analysis, when size becomes much more informative than color, 
color ceases to be used for decision-making.

“Flipped” treatments

Our bootstrap analysis showed that the slopes of  decision boundar-
ies between our “flipped” treatments 7–9 and the regular treatment 
5 did not differ significantly (all simulated P-values > 0.05), indicat-
ing that dimensions were perceived independently.

DISCUSSION
We have shown that some qualitative predictions of  SDT for 
mimicry may be borne out when applied to multiple dimensions, 
although the predictions are often not upheld when evaluated 
quantitatively. For example, as predicted, mimics are less likely to 
be attacked as they approach their models in phenotype, but the 
best-fit model for a group’s behavior usually does not contain the 
optimal decision boundary—if  it is even a straight line at all. This 
is broadly consistent with a similar experiment by McGuire et  al. 
(2006), who found qualitative agreement with SDT but some quan-
titative deviations from optimality.

Individual subjects’ behavior is not generally well-described by 
SDT. Many subjects focused on color while ignoring size in treat-
ments 5, 7, 8, and 9, and in treatment 6 many appeared to use size 
exclusively although there was some information to be had in color 
(Figure 4). Even in 1-dimensional treatments, it was not uncommon 
for subjects’ behavior to be best described by a random model rather 
than one of  the form predicted by SDT. Although group behavior 
can be at least qualitatively described by SDT, this is an emergent 
property of  the aggregate behavior of  individuals, and could often 
be better represented by 3-parameter interaction models.

Why is human behavior not well explained by multidimensional 
SDT? Psychologists have extensively studied the performance 

Click to GAIN 1 point!

Continue

Telling the di�erence between nice prey and horrible prey

Avoid these you LOSE 1 point!

Figure 3
Screenshot of  the initial screen that subjects were shown prior to beginning. Here, mimics are on the left and models are on the right. Mean prop. blue of  
mimics = 0.4 ± 0.15, mean prop. blue of  models = 0.7 ± 0.15. Mean size of  mimics = 24 ± 4 pixels, mean size of  models = 31.2 ± 4 (1.3 times bigger).
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Reponses from groups of  subjects in treatments 5 and 6. Densities of  mimics and models presented are given by black and white contours, respectively. 
The optimal decision boundaries are shown by solid black lines, the group decision boundaries are shown by the dashed lines, and individual subjects’ 
decision boundaries are shown by the dotted lines. All thresholds determined through the fit of  a binary logistic model on attacking/not attacking 
prey with prey color and prey size as predictors, with the probability of  attack set to 50%. The observed probability of  attack decreases with darker 
shading.
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of  humans on multidimensional discrimination tasks for which 
the optimal solution is given by SDT. This body of  modeling is 
often referred to as general recognition theory (GRT; Ashby and 
Townsend 1986; Ashby and Maddox 1990). Psychologists are inter-
ested in fundamentally different questions from behavioral ecolo-
gists; namely, they aim to describe the mental representations and 
decision-making processes of  humans rather than explain behavior 
from the perspective of  evolutionary optimality. Nonetheless, GRT 
is informative in predicting whether or not humans will follow the 
expectations of  SDT, and has some implications for mimicry.

The most pertinent GRT concept for this experiment is that of  
decisional separability: does dimension A affect decisions made about 
dimension B across different levels of  A? In our case, does the mean 
value of  color affect how size is used to make decisions (i.e., the dif-
ference across treatments 5 and 6, but not variation within either 
treatment)? Clearly, it does, because when color and size are equally 
informative, subjects often use only color to make decisions. This hap-
pens despite our finding from 1-dimensional experiments that either 
color or size alone can be used to make discriminations. Therefore, 

we conclude that size is not entirely decisionally separable from color. 
Ashby and Maddox (1990) found a similar result when they asked sub-
jects to discriminate between semicircles based on their size and the 
orientation of  a line within them. When only one dimension contained 
information, subjects were capable of  discriminating accurately, but 
when both were equally informative and independent, subjects pre-
ferred to use line orientation rather than size to classify stimuli.

There are many reasons why, in nature, size ought not to be a 
particularly valid cue in judging the properties of  objects. First, any 
ambiguity in the distance of  an object from the viewer will result in an 
inaccurate estimate of  size. Size may also be uninformative for telling 
harmful prey from harmless prey; different species would frequently 
be expected to overlap in size during different stages of  ontogeny. 
Color, on the other hand, will be much more informative due to 
mechanisms that enforce color constancy in the retina (Kelber et al. 
2003). During learning experiments, animals in cognitive psychology 
experiments quickly learn to prefer one cue over another if  it is a 
more valid predictor of  a stimulus (“relative validity”; Shettleworth 
2010). It seems likely that over evolutionary time, innate estimates 

individuals groups

# models retained = 77 # models retained = 11

# models retained = 166 # models retained = 19

0

0 0
2

4
6

8
0

2
4

6
8

10
0

2
4

6
8

10

10
20

30
0

20
40

60
0

20
40

60

1 32

# models retained = 222

number of  informative parameters

0 1 32

0 1 32

32

# models retained = 26

321

321

be
st

 m
od

el

nu
m

be
r 

of
 m

od
el

s

∆A
IC

 <
 2

∆A
IC

 <
 5

Figure 5
We fit models to the behavior of  both individuals and groups for 2-dimensional SDT tasks (treatments 5–9) to find optimal decision boundaries. The models 
we considered were attack probability ~ 1, attack probability ~ color (one parameter; light gray), attack probability ~ size (one parameter; dark gray), attack 
probability ~ color + size (2 parameters), and attack probability ~ color * size (three parameters, including main effects). When 0-, 2-, or 3- parameter models 
provide the most parsimonious fit, neither or both phenotypic dimensions are employed (white). (a, c, and e) Distribution of  the number of  parameters for models 
fit to each of  77 individuals. (b, d, and f) Distribution of  the number of  parameters for the models fit to each of  11 groups. The top row (a and b) shows only the 
best models (lowest AIC); the middle row (c and d) shows all models within 2 ΔAIC of  the lowest AIC, and bottom row shows all models within 5 ΔAIC.
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of  relative validity would evolve if  some cues are more consistently 
valid than others, for example, color versus size (Shettleworth 2005). 
Therefore, it should not be surprising that receiver psychology favors 
subjects’ use of  color over size when categorizing stimuli as costly or 
beneficial (Rowe 1999; ten Cate and Rowe 2007).

Relative validity is related to another concept from cognitive 
psychology called “overshadowing,” which has also been invoked 
to explain why some traits on imperfect mimics are preferred over 
others (Cuthill 2014; Kazemi et  al. 2014). In overshadowing, sub-
jects presented with two cues that predict a stimulus form weaker 
associations between each cue and the stimulus than if  they had 
been trained using single cues (Mackintosh, 1976). The effects of  
overshadowing are often asymmetrical, with one cue being more 
strongly associated with the stimulus than the other (Mackintosh 
1976). Although overshadowing occurs during learning, whereas 
SDT assumes that subjects have complete knowledge, results from 
signal detection experiments such as those of  Ashby and Maddox 
(1990) and this one suggest that subjects may consistently favor one 
dimension over another. If  subjects have strong prior beliefs about 
the relative validity of  cues such as color versus shape, size, or pat-
tern, it could readily create overshadowing-like effects where subjects 

prefer to use one cue over another for categorization. Such effects 
are expected to have important implications for the origination of  
mimicry because its evolution could be initiated with a mutation 
that affects a single critical aspect of  phenotype (Chittka and Osorio 
2007; Gamberale-Stille et  al. 2012), rather than a mutation of  
improbably large effect on all perceptible dimensions of  phenotype 
(Punnett 1915; Nicholson 1927). Indeed, avian predators often use 
color instead of  size, shape, or pattern when performing discrimina-
tion tasks (Terhune 1977; Kazemi et al. 2014), suggesting that color 
is a likely candidate trait to initiate the evolution of  mimicry.

Generally speaking, we found that the effects of  varying costs on 
subjects’ behavior were quite weak relative to others. In a similar 
experiment on 1-dimensional computer prey that varied in color, 
McGuire et al. (2006) found that the proportion of  mimics attacked 
was not significantly influenced by the relative abundance of  mim-
ics, but that the probability of  an individual mimic being attacked 
was (these contrasting results were given by different methods of  
analysis). In our 2-dimensional treatment, we did not find that costs 
of  errors significantly predicted attack probability. There are at least 
two potential explanations for why subjects’ behavior is less sensi-
tive to cost than expected. First, subjects might not take points in 

Table 4
Table of  fixed effects in our generalized linear mixed model of  the probability of  attack on mimics (binomial errors) with relative 
cost, color, size, treatment, and their interactions as additional predictors. Individuals were allowed to have their own slopes and 
intercepts with respect to color and size

Estimate Standard error z-value P-value

Intercept 23.30 5.50 4.24 <0.001
Relative cost −4.45 2.63 −1.69 0.09
Prop. blue −37.24 10.26 −3.63 <0.001
Size −0.47 0.21 −2.21 0.03
Treatment −17.76 6.72 −2.4 0.008
Relative cost • prop. Blue 5.70 5.31 1.07 0.28
Relative cost • size 0.16 0.10 1.49 0.13
Prop. blue • size 0.71 0.39 1.82 0.07
Relative cost • treatment 2.55 3.50 0.73 0.47
Prop. blue • treatment 35.72 12.32 2.90 0.004
Size • treatment 0.32 0.26 1.22 0.22
Relative cost • prop. blue • size −0.25 0.21 −1.22 0.22
Relative cost • prop. blue • treatment −3.15 6.74 −0.47 0.64
Relative cost • size • treatment −0.08 0.14 −0.58 0.56
Prop. blue • size • treatment −0.63 0.47 −1.34 0.18
Relative cost • prop. blue • Size • treatment 0.1 0.26 0.39 0.70

Table 3
Slopes and intercepts of  decision boundaries for 2-dimensional trials on the group level, calculated from 1000 bootstrap 
pseudoreplicates

Treatment C:B Optimal slope
Empirical  
slope 95 % CI P-value of  slope Optimal intercept

Empirical int.  
95 % CI

P-value of   
intercept

5 0.33 1.60 1.57–1.58 <0.001 46.3 126 to 951 0.018
1 1.60 1.57–1.58 <0.001 43.9 90 to 209 <0.001
3 1.60 1.57–1.58 <0.001 41.5 82.2 to 343 <0.001

6 0.33 −1.40 −1.47 to 1.48 0.148 34.7 26.9 to 38.7 0.486
1 −1.40 −1.52 to −1.18 0.212 33.3 33.9 to 45 0.028
3 −1.40 −1.56 to −1.54 <0.001 31.8 40.1 to 60.9 <0.001

7 0.33 1.60 1.57 to 1.58 <0.001 41.5 104 to 249 <0.001
1 1.60 1.58 to 1.59 <0.001 43.9 65 to 94.4 <0.001
3 1.60 1.57 to 1.58 <0.001 46.3 138 to 1540 0.03

8 1 1.53 1.56 to 1.57 <0.001 11.3 −79 to −11.8 0.008
9 1 1.53 1.56 to 1.57 < 0.001 11.3 −78.1 to −11.5 <0.001

Two-tailed P-values reflect the probability that the 95% CI contains the optimal value. Treatments 7–9 are from “flipped” data where color and/or size were 
reversed from treatment 5, where color and size are approximately equally informative. Slopes are given in radians because sometimes the CIs include the y axis 
(1.571 or −1.571 radians).
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a computer game very seriously, and be more interested in figur-
ing out the categorization task rather than optimizing their scores. 
Second, they might not assume that the phenotypes of  prey are 
normally distributed and therefore form inaccurate estimations of  
where their decision boundaries should lie.

In sum, we have performed a test of  2-dimensional SDT as it 
applies to Batesian mimicry. Individual human subjects display 
wide variability in their decision boundaries, perhaps due to strong 
yet varying beliefs about the relative validity of  size versus color 
for performing categorization tasks. Groups of  subjects often also 
deviated from optimality. Studies of  mimicry that involve con-
tinuous variation between models and mimics in multiple dimen-
sions should consider the possibility that dimensions might not be 
weighted equally by predators. Color is of  fundamental importance 
to discrimination ability, and could initiate the evolution of  mim-
icry, but to better support such a conjecture, we need more studies 
of  predators in natural mimicry systems and comparative informa-
tion on the evolution of  mimetic color patterns.

SUPPLEMENTARY MATERIAL
Supplementary material can be found at http://www.beheco.
oxfordjournals.org/
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